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Abstract. We use the theory of active gels to study theoretically the merging and separation of two actin
dense layers akin to cortical layers of animal cells. The layers bind at a distance equal to twice the thickness
of a free layer, thus forming a single dense layer, similar in this sense to a lamellipodium. When that unique
layer is stretched apart, it is resilient to break apart up to a critical length larger than twice the thickness of
a free layer. We show that this behavior can result from the high contractile properties of the actomyosin
gel due to the activity of myosin molecular motors. Furthermore, we establish that the stability of the
stretched single layer is highly dependent on the properties of the gel. Indeed, the nematic order of the
actin filaments along the polymerizing membranes is a destabilizing factor.

1 Introduction

Fundamental biological processes such as adhesion, migra-
tion, and division of living animal cells strongly depend
on the mechanics and the activity of their cytoskeleton.
The cytoskeleton has a complex structure made of several
components. It is generally accepted that the mechani-
cal properties of animal cells essentially depend on the
actomyosin component of the cytoskeleton, which is re-
sponsible for stress generation, and controls the response
of cells to external mechanical perturbations [1, 2]. The
actomyosin cytoskeleton has received much experimen-
tal [3, 4] and theoretical attention [5,6]. It is composed of
a dense meshwork of semi-flexible actin filaments interact-
ing with myosin motor mini-filaments and actin-associated
proteins. It is located in many cells in the vicinity of the
cell membrane [7] where it forms the so-called cortical
layer [8, 9]. Myosin motors hydrolyze adenosine triphos-
phate (ATP) molecules and can produce work. They cross-
link actin filaments and create active contractile stresses
in the actomyosin gel [10].

A hydrodynamic description that captures the behav-
ior of active gels on large length and time scales was estab-
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lished to describe in particular the dynamics of the acto-
myosin gel [11–13]. It has been successfully applied to var-
ious situations: the discovery of spontaneous flows [14,15],
spontaneous waves [16] and more recently to the closure of
the contractile ring during cytokinesis [6,17]. The interac-
tion of two layers of actomyosin gel has to our knowledge
never been theoretically investigated. It is however of crit-
ical interest as a first step to understand the formation of a
lamellipodium during cell motility. The lamellipodium is a
dense layer of actin protruding from the main cytoskeletal
structure of the cell body. Although actin flow inside the
lamellipodium has been studied [18], the understanding of
the precise shape of the protrusion linked to its structure
remains to be explored.

In this work we are interested in the effect of the ac-
tive contraction of actin gels on the interaction between
two actin cortical layers. A recent theoretical work [5] has
shown that the key element for the formation of a con-
densed actin layer in a stationary state at the membrane
surface is the contractility of the actomyosin gel induced
by the myosin molecular motors. In the cortical layer, in a
simplified description, actin is treadmilling: it polymerizes
at the cell membrane and depolymerizes in the bulk of the
layer. Within the theory of active gels, the layer thickness
is determined by the ratio between the polymerization ve-
locity and the depolymerization rate of actin [5]. It is clear
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Fig. 1. a) Lamellipodium (at the arrowhead) promoted with
incubation with 100 μM C8-BPA for 10 min (scale bar: 5 μm).
b) Schematic of the cell contour. The cell moves in the direction
of the lamellipodium. At the inner edge, the dense actin bundle
is separated into two layers to form the actin cortex. c) Sym-
metric cell along the z-axis. C8-BPA was added 80 min after
cell resuspension using trypsin treatment (scale bar: 5 μm).
d) Non-symmetric cell along the z-axis. C8-BPA was added
10 min on spread cells (scale bar: 10 μm). F-actin is labeled in
red in a), c), d), myosin in green in c), the nucleus in blue in
c), d). See appendix A for details.

that the interplay between contractility and average de-
polymerization impacts the interaction between two close
layers.

Experimentally, dense actin can be observed in the
lamellipodium. The lamellipodial protrusion is mainly
generated by continuous growth of actin filaments from
the leading edge [19] (see figs. 1(a) and (b)). Synthetic
polyamines C8-BPA were recently shown to promote the
growth of lamellipodia within minutes [20] (see fig. 1(a)).
We used them and visualized the cell cortex along the z-
axis on single spread cells with different experiments, as
presented in figs. 1(c) and (d). These acquisitions demon-
strate that the actomyosin cortex is spanning the cell con-
tour and that there are multiple locations where the cyto-
plasm between layers presents a dense actin content. An
important goal is therefore to understand how one sin-
gle dense layer of actin (as in the lamellipodium at the
cell front) can separate into two layers of actin cortex (see
fig. 1(b)) and vice versa. To study the merging and separa-
tion of actin cortical layers we generalize here the hydrody-
namic description of active gels to the case of two infinite
planar membranes facing each other. We restrict the study
to flat membrane surfaces. In the following we show that in
the case of highly contractile actomyosin gels, with a high
myosin activity and relatively low depolymerization rate,
the merging and separation process is hysteretic. Contrac-
tility is the driving force, either maintaining separated lay-
ers firmly condensed near the membranes, or preventing a
stretched single layer, similar to the lamellipodium, from
breaking apart.

This paper is organized as follows. In sect. 2 we present
the hydrodynamic equations for an actin gel between two
infinite planar membranes, in a two-dimensional geome-

Fig. 2. a) Illustration of two interacting layers. The schematic
shows two infinite planar membranes located at a distance L.
The actin gel is distributed in between. The dynamics of poly-
merization and interaction close to the membrane are illus-
trated in b): Actin polymers are nucleated from the membrane
surface at rate ks. Polymerization and depolymerization of the
polymers happen in the bulk at rate kp and kd, respectively.
Myosin motors (blue stars) act as active cross-linkers between
actin polymers, giving strong contractile properties to the gel.

try. We then solve these equations in sect. 3 in the one-
dimensional steady state. We study precisely the actin
density between the layers as a function of the distance
between the membranes, upon a change in the gel con-
tractility. Finally we discuss in sect. 4 the stability of a
single “stretched” layer in the presence of both isotropic
and anisotropic contractility.

2 Hydrodynamic description

We present here the hydrodynamic equations governing
the temporal and spatial dynamics of an assembling ac-
tive actin gel. The gel and the solvent are localized be-
tween two planar membranes located at z = −L/2 and
z = L/2, as shown in fig. 2(a). We assume locally pla-
nar membranes because the typical thickness of the actin
gel in a cell (200–500 nm) is very small compared to the
cell curvature radius (1μm or more), except at the lamel-
lipodium outer front. We restrict ourselves to a symmetric
case, where the properties of the actin cortex are the same
near each membrane. As suggested by the experiments,
we assume furthermore that the gel is assembled by actin
polymerization at the membrane surface at a rate ks (see
fig. 2(b), in the main body [21] and also in the lamel-
lipodium [22]). The polymerization at the membrane is
promoted by nucleating proteins [7]. Away from the sur-
face, the actin gel assembles by elongation of existing fila-
ments or by nucleation of new filaments and disassembles
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because of monomer removal at the filament minus-ends
or by filament severing. In our coarse-grained approxima-
tion, we model elongation and nucleation by a single ef-
fective polymerization rate kp, which takes into account
the bulk nucleating proteins, and disassembly by a single
depolymerization rate kd.

The whole system lies in the cytoplasm which acts
as a reservoir containing, among other molecules, myosin
free motors and actin monomers. Myosin molecular mo-
tors assemble as minifilaments and act as cross-links be-
tween actin filaments, thus generating mechanical stress
in the filamentous network. Following the approach of [5]
we limit ourselves to the case where the exchange of mo-
tors between the actin network and the solvent is so fast
that we can assume chemical equilibrium. Motor diffusion
is also assumed to be fast enough that the concentration
of free motors in the solvent is constant. In a first approx-
imation, the concentration of motors bound to actin is
then proportional to the local density of actin monomers
assembled into polymers.

The actin gel possesses a polarization field dependent
on the local orientation of the filaments. The orientational
order is in general nematic with the filaments oriented on
average parallel to the surface but we consider also the
isotropic case for the sake of generality.

We model the direction of each filament by a unit
vector in Cartesian coordinates: p(x, y, z, t) = (cos(ϕ)
sin(θ)+δpx)ex +(sin(ϕ) sin(θ)+δpy)ey +(cos(θ)+δpz)ez

with ϕ and θ the usual spherical coordinates and δpx, δpy

and δpz represent small fluctuations. ϕ is uniformly dis-
tributed (no preferred direction in the plane parallel to
the membrane surface) in [0, 2π], and θ may have a more
complex distribution.

The nematic tensor is defined as Qαβ =〈pαpβ− 1
3p2δαβ〉,

where the average is a local average over the filament ori-
entation. It reads at a O(δpx,y,z):

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

〈
sin2(θ)

〉
2

− 1
3

0 0

0

〈
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〉
2

− 1
3

0

0 0
〈
cos2(θ)

〉
− 1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(1)
For further simplicity, we also consider that the gel is

homogeneous in the y direction along the membrane, so
that its properties only depend on the z and x coordinates.

2.1 Mass conservation

The density ρ of actin monomers assembled into polymers
follows the conservation law:

∂tρ + ∂α(ρvα) = kp − kdρ, (2)

where v is the gel velocity field. We adopt Einstein’s sum-
mation convention. The rates kp and kd can depend on the
local actin density and on the local stresses in the gel. Such

dependences were considered in the description of actin
gels in [23, 24]. In our study, these dependences do not
add physical content, and do not change the main results.
The rates can also depend on the membrane considered,
wether it is the free membrane or the one attached to the
substrate, or wether it is the membrane in the main cell
body or in the lamellipodium. Because we do not intend
to describe the longitudinal profile of the lamellipodium in
this paper, we restrict ourselves to the case where kp and
kd are uniform constants in the following. We introduce
in particular ρ∞ = kp/kd, which measures the density ρ
far from any boundaries and in a gel at steady state.

The fact that polymerization occurs also at the mem-
brane surface with a surface rate ks yields the boundary
condition ρvz|z=−L/2 = −ρvz|z=L/2 = vpρ0, where ρ0 is
the density of the actin gel at the surface and vp = ksδ
is the polymerization velocity, δ being the effective size of
an actin monomer. The density ρ0 and the polymerization
velocity vp depend, among other factors, on the density of
nucleating sites at the membrane. We consider that the
boundary conditions are invariant by translation along x,
so that ρ0 and vp are constant.

2.2 Force balance

We need yet another equation to characterize the mechan-
ical equilibrium and the molecular fluxes in the system.
We combine here multiple approaches on the theory of
active permeating gels [5, 11–13, 25] to derive equations
that are relevant in our case. In the following, we give
only the general methodology to derive the equations. In
our system the thermodynamic fluxes involved are the
stress tensor σ, the time derivative of the elastic strain
tensor in the gel, the relative current between the actin
gel and the solvent j = ρ(v − vs), and the rate r of ATP
consumption. The conjugated forces are the gradient of
the relative chemical potential μ̄ between gel and solvent,
the velocity gradient, the partial stress tensor of the gel
and the activity of the system. Active processes in the
system are essentially driven by the hydrolysis of ATP
into adenosine diphosphate (ADP) and inorganic phos-
phate Pi, with chemical potentials μATP, μADP and μPi

re-
spectively. We then measure the system’s activity through
Δμ = μATP − μADP − μPi

.
The general theory of active gels then uses the Onsager

linear relation between fluxes and forces. Here, we give
only the final equation for the relative current between
actin gel and solvent for an apolar active gel

jα ≡ ρ(vα − vs,α) = −γ∂αμ + χ∂βσαβ , (3)

with γ and χ two transport coefficients, and vs the velocity
field of the solvent.

In eq. (3), we consider that the Onsager coefficients are
independent of the nematic order of the gel; the viscosity
for instance is isotropic. The general theory includes other
anisotropic terms that we ignore here. As the filaments
can present anisotropic ordering, we must consider the
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contribution of Qαβ to the stress tensor

2ηvαβ =
(

1 + τ
D
Dt

)
(σαβ + ζ ′ΔμQαβ + ζΔμδαβ) , (4)

where vαβ = 1
2 (∂αvβ + ∂βvα), D

Dt is the convective time
derivative, and τ is the viscoelastic relaxation time. The
active coefficients ζ and ζ ′ denote the contributions of the
active stress to the partial stress tensor. They are negative
in the cell cortex because experimentally, activity leads to
contractile stresses, and they depend on the gel density
ρ. Equation (4) is a generalization of the Maxwell model
for an active gel with nematic order. For the actin cortex,
we consider that the experimental time scales are large
compared to the viscoelastic relaxation time, so that we
can neglect the convective time derivative.

We rewrite the term involving the relative chemical
potential μ̄ in eq. (3), using the Gibbs-Duhem equation
dΠ̃ = ρdμ̄ that gives the evolution of the osmotic pres-
sure Π̃ as a function of μ̄ in the case where the total
volume of the system is constant (independent of com-
position, and incompressible). We then define an effec-
tive osmotic pressure, adding the active terms: Παβ =
Π̃δαβ + ζΔμQαβ + ζΔμδαβ . With γ = χρ, eq. (3) can be
rewritten as

ρ

χ
(vα − vs,α) = 2∂β(ηvαβ) − ∂βΠαβ . (5)

We proceed using the same approximation as in [5] to
neglect the permeation current. The permeation constant
ρ/χ can be estimated as ηs/ξ2, where ξ is the gel mesh
size and ηs the solvent viscosity. We then compare the
two competing dissipative mechanisms, namely the gel
viscosity and the permeation of the solvent through the
actin gel. This comparison defines a permeation length
Lp = (ηχρ−1)1/2 = (η/ηs)1/2ξ. The experiments of [26]
allow us to estimate ηs ∼ 103 Pa s (effective viscosity mea-
sured for reference parameters of the actin gel). We take
a solvent viscosity of 10−3 Pa s (close to water). With typ-
ical mesh sizes ξ of a few tens of nanometers, we obtain
a permeation length of the order of tens of microns. This
permeation length is sufficiently large compared to the
thickness of the cortex. This argument allows us to ne-
glect the left-hand side of eq. (5) compared to the viscous
dissipation term if we consider the dynamics on length
scales smaller than the permeation length scale.

From now on, we consider the gel density ρ and the gel
velocity v as the only hydrodynamic variables. All quanti-
ties are considered to be invariant in the y direction, with
no velocity along the y axis. Consequently, we write v
as the vector (u, 0, v). The projections of the constitutive
eqs. (2) and (5) on the x and z axis read

⎧⎪⎪⎨
⎪⎪⎩

∂tρ + ∂z(ρv) + ∂x(ρu) = −kd(ρ − ρ∞),

∂z (η(∂xv + ∂zu)) + 2∂x(η∂xu) − ∂xΠx = 0,

∂x (η(∂zu + ∂xv)) + 2 ∂z(η∂zv) − ∂zΠz = 0,

(6)

with, using eq. (1)

Πx = Π̃ + Δμζx, Πz = Π̃ + Δμζz,

ζx = ζ + ζ ′

(〈
sin2(θ)

〉
2

− 1
3

)
,

ζz = ζ + ζ ′
(〈

cos2(θ)
〉
− 1

3

)
.

3 Interaction between two cortical actin
layers

We now solve the equations in the one-dimensional case,
considering that the problem is invariant in the x direc-
tion. We also look for stationary solutions. The equations
governing the gel fluid flow and the gel density are then
easily obtained from eqs. (6)

{
∂z(ρv) = −kd(ρ − ρ∞),

2η∂zzv − ∂zΠ(ρ) = 0,
(7)

where Π(ρ) is considered in this section to be a function
of ρ only. We do not consider here contributions to the
effective pressure involving the derivative of ρ, or higher
order derivatives. Such contributions could account for a
surface tension between the layer and the solvent.

3.1 Analytic solution of the bilayer problem

We look for a solution on the half-domain [−L
2 , 0] and

deduce the solution on the other half by symmetry. In
this half-domain, the boundary conditions are

ρ
∣∣
z=−L/2

= ρ0, v
∣∣
z=−L/2

= vp, v
∣∣
z=0

= 0.

The two first conditions are required by the polymeriza-
tion at the membrane surface and the last one is required
by symmetry. Symmetry could also impose, a priori, that
dρ
dz |z=0 = 0. In the following analytical derivation, we find
solutions on the half-plane that verify dρ

dz |z=0− = −∞.
These solutions are still symmetric, but the derivative of
ρ is not well defined at z = 0. There is no mathematical
contradiction, since eqs. (7) do not allow to conclude on
the continuity of the derivative of ρ near points where the
velocity field vanishes.

We integrate the second line of eqs. (7) with respect
to z and evaluate the integration constant by using the
boundary conditions in z = 0. This yields 2η∂zv = Π(ρ)−
2ηkd(1− ρ∞

ρc
)−Π(ρc), where ρc = ρ(z = 0) is the density at

the center of the domain to be determined. We then define
f(ρ, ρc) = g(ρ) − g(ρc) with g(ρ) = −Π(ρ) + 2ηkd(ρ∞

ρ ),
such that

2ηv =
(

dρ

dz

)−1

ρf(ρ, ρc). (8)
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Fig. 3. Schematic of the graphical construction of a solution
ρ(z). On the left-hand side graph, the effective gel tension g(ρ)
is drawn. According to the position of the curve of g(ρ) to
the horizontal line, we deduce the sign of f(ρ, ρc,1) = g(ρ) −
g(ρc,1...3). This allows (eq. (9)) to draw arrows indicating the
evolution of ρ as a function of z. If ρ(z = −L/2) = ρ0, then
ρ(z) decreases until ρc,1 in z = 0, as reported on the right-hand
side graph.

We call g(ρ) the effective gel tension1. Finally, using eq. (8)
and integrating the first line of eqs. (7) yields

dρ

dz
=

ρ2f(ρ, ρc)
2ρ0ηvp

exp
(∫ ρ

ρ0

2ηkd(ρ′ − ρ∞)
(ρ′)2f(ρ′, ρc)

dρ′
)

. (9)

The study of the zeros of f(ρ, ρc) is essential to find
the values of the density to which the profile converges
at z = 0. Equation (9) indicates that ρ converges to the
root of f(ρ, ρc), with negative slope, closest to ρ0. This
is not straightforward, and to make the argument clearer,
we detail briefly the construction of one solution, with the
help of the schematic of fig. 3. We pick three values ρc,1,
ρc,2 and ρc,3 that are such that g(ρc,1) = g(ρc,2) = g(ρc,3)
and ρc,1...3 ≤ ρ0. We try to build up the profile ρ(z) and
in particular the value of ρ(z = 0). We look first for the
sign of f(ρ, ρc,1...3) = g(ρ)− g(ρc,1...3). If g(ρ) ≤ g(ρc,1...3)
on an interval, then f is negative on that interval and
from eq. (9), we deduce that ρ(z) is a decreasing function
of z, and vice versa. This means that the intersections
between g(ρ) and g(ρc,1...3) with negative (respectively,
positive) slopes give stable (respectively, unstable) fixed
points of the density profile. Thus, if we start with ρ(z =
−L/2) = ρ0 as in fig. 3, ρ(z) decreases until ρ(z = 0) =
ρc,1, and cannot become smaller. To conclude the only
possible value of ρc is the closest stable fixed point to ρ0.

The boundary condition: v|z=0 = 0 must also be sat-
isfied. Combining eqs. (8) and (9) in z = 0 yields the
condition ρc ≥ ρ∞. We consider the experimentally rele-
vant case for which the polymerization in the vicinity of
the surface is more efficient than in the bulk, and assume
ρ0 ≥ ρ∞. Knowing from eq. (9) that ρ is a monotonous
function of z, we deduce for all z, ρ(z) ≥ ρ∞.

Finally, to compute the value of the density at the
midplane ρc as a function of the thickness L, we integrate
eq. (9) and use the fact that ρ|z=−L/2 = ρ0 to obtain the

1 Not to be confused with the stress in the system.

Fig. 4. Dark blue: schematic of the possible shapes of the ef-
fective gel tension g according to the contractile properties of
the gel. Red: contribution to g associated with depolymeriza-
tion. Light blue: contribution to g associated with pressure and
activity. The cases elaborated in the paper are distinguished:
a) weakly contractile limit, b) intermediate contractile limit and
c) strongly contractile limit.

implicit relation

L(ρc)kd

2vp
=

∫ ρc

ρ0

2ηkdρ0

ρ2f(ρ, ρc)

× . . . exp
(
−

∫ ρ

ρ0

2ηkd(ρ′ − ρ∞)
(ρ′)2f(ρ′, ρc)

dρ′
)

dρ.

(10)

3.2 Dependence of the concentration profile on
actomyosin contractility

We now emphasize the contributions of two very different
terms in the effective gel tension. The contribution of poly-
merization (+2ηkdρ∞/ρ) is well known: it is a decreasing
function that can be more or less important according to
the value of kp = kdρ∞. The part associated with pres-
sure and activity (−Π(ρ)) is increasing for small values
of ρ (due to myosin activity that is responsible for gel
contractility) and then decreasing for higher values of ρ.
According to the ratio of kdρ∞ to contractility, g can only
have two possible shapes. If the contractility is weak (or
kdρ∞ is high), the resulting profile is a monotonous de-
creasing function (curve (a) of fig. 4). If the contractility
is strong (or kdρ∞ is low), the resulting profile has one
local minimum and one local maximum (curves (b) and
(c) of fig. 4). This results in a strong difference in terms
of possible actin density profiles for a given thickness L.

In each limit, two regimes of merging between the two
cortical layers are possible. The regime where ρc is close
to ρ∞ corresponds to a situation where the layers are sep-
arated, and do not interact. We call this regime the cor-
tical regime, because the layers are condensed near the
surface as the actin cortex [5]. The regime where ρc is
close to ρ0 corresponds to a situation where the layers
merge and strongly interact. We call this regime the single
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Fig. 5. Left: Schematic of the possible shapes of the effective
gel tension g for increasing contractile properties, e.g. myosin
activity. Right: Associated diagrams of ρc, density at the center
of the layers, as a function of L, distance between the layers,
in different limits: a) weakly contractile limit, b) intermediate
contractile limit and c) strongly contractile limit.

layer regime. Because this solution is topologically similar
to the actin density located in the lamellipodium where
only a single dense actin layer may be observed, our study
could be a starting point for the study of the transition of
the acto-myosin gel from the cortex to the lamellipodium.
In the subsequent subsection we show the following re-
sults:

– In the weakly contractile limit there is no clear distinc-
tion between the cortical and single layer regimes. As
the layers are brought closer together, the density of
actin increases continuously at the center (see inset (a)
of fig. 5).

– In the intermediate contractile limit g presents a local
maximum, which is not larger than g(ρ∞) (curve (b) of
fig. 4). In this limit, a range of values are not accessible
for ρc. When the layers are brought closer together, the
density at the center of the domain has a sudden jump
at a distance L (see inset (b) of fig. 5). There is in this
limit a clear distinction between the cortical and the
single layer regimes.

– The strongly contractile limit corresponds to even
higher contractility, where g presents a local maximum
that exceeds the value of g(ρ∞) (curve (c) of fig. 4). In
this limit, there is hysteresis in the merging of the lay-
ers. At large distances, the layers are well separated in
the sense that they have a finite thickness smaller than
L/2. At a distance equal to twice the thickness of a free
layer, the layers start interacting. When streched apart
the layers do not split in two cortex-like layers until a
membrane separation distance significantly larger than
twice that of a free layer is reached (see inset (c) of
fig. 5).

3.3 Graphical solution

The analytical form of L given by eq. (10) is not very con-
venient. Indeed, it does not allow to answer explicitly the
question of finding the actin density profile (represented
by ρc) for any value of the spacing between membranes L,
since ρc is only implicitly expressed in eq. (10). In prat-
ice we eventually fix ρc to find L and revert to the more
natural relation of ρc as a function of L.

Equation (10) allows to derive a few useful results (see
appendix B for the derivation):

– L is a continuous function of ρc. This does not mean
however that when the distance between membranes
varies, the corresponding evolution of the density pro-
file of actin at the midplane ρc is smooth. For instance
in the intermediate and strongly contractile limit, ρc

is not a smooth function of L (see the insets of fig. 5).

– L is a decreasing function of ρc. Intuitively, a higher
density of actin at the center is more easily achieved
when the membranes are closer together.

– As L goes to 0, ρc diverges to +∞. No limiting value
for ρc is indeed expected, given that for small L, the
total amount of actin filaments is finite, being perma-
nently fed by the surfaces.

– As L goes to +∞, ρc converges to ρ∞. Indeed, when
the membranes are far apart from each other, the lay-
ers interact less, and the density at the midplane ap-
proaches that of the free gel.

– The distance between membranes L0 to get a uniform
density profile, or ρc = ρ0, verifies L0kd

vp
= 2ρ0

ρ0−ρ∞
. As a

consequence of the second item, as soon as L ≥ L0, the
density at the center is smaller than ρ0. For L ≤ L0,
the membranes are so close that ρc ≥ ρ0.

The first four results warrant the existence of at least
one solution for any value of L.

Furthermore, we notice that eqs. (7) guarantee the con-
tinuity of v and ρv as functions of z. The continuity of ρ(z)
is not ensured however, in particular if v vanishes, which
is the case at least at the midplane. In appendix C we
show the following result concerning the condition for the
existence of a discontinuity in the profile of ρ(z):

– The only possible discontinuity in the profile of ρ(z)
is between ρf and ρ∞, where ρf is the solution to the
problem ⎧⎪⎪⎨

⎪⎪⎩

g(ρf ) = g(ρ∞)

g′(ρf ) ≤ 0

ρf 	= ρ∞

(11)

We plot for clarity the construction of this solution in
fig. 6.

Such a solution is possible if the effective gel tension
g has a local maximum higher than g(ρ∞), e.g. in the
strongly contractile limit. This particular solution corre-
sponds to free layers, in the sense that each layer has a
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Fig. 6. Schematic of the graphical construction of the solution
ρ(z) with a discontinuity in ρf as defined by eq. (11). On the
left-hand side graph, the effective gel tension g(ρ) is drawn
and a graphical construction similar to the one done in fig. 3
is performed. On the right-hand side, the profile ρ(z) with a
discontinuity from ρf to ρ∞ is plotted.

finite width corresponding to the part of the density pro-
file that goes from ρ0 at the membrane to ρf . The region
where ρ(z) = ρ∞ can have any width from zero to infinity,
allowing to match any distance between membranes larger
than L(ρf ).

These rules of evolution of L with ρc allow to build up
a plot of L versus ρc. For a given value ρ0, we simply look
at the function g(ρ). The density profile evolves from ρ0 to
all nearest possible stable fixed points (e.g. points where
g has a negative slope), which define all values of ρc. The
corresponding values of L are deduced from the rules.

For simplicity we take in the following a value of ρ0

rather high, in the sense that it is higher than any relevant
variation of the effective gel tension g. The results below
can however be easily extended to smaller values of ρ0.

We conclude now on the solutions of the bilayer prob-
lem for the different limits of contractility.

3.3.1 Weakly contractile limit

In the weakly contractile limit, the effective gel tension g
is a monotonously decreasing function of ρ (see curve (a)
of fig. 4). We start out with L = L0 and thus ρc = ρ0.
All values of ρc ≤ ρ0 can be directly reached. ρc is thus a
continuous decreasing function of L in this case (see fig. 7).

We check our results numerically by simulating a very
slow variation of the distance between membranes. A suf-
ficiently slow displacement allows to approach the steady
state solutions of the problem. In the numerical solu-
tion, we must specify the functional Π(ρ). We choose
Π(ρ) = aρ3+bρ4 as in [5], where a < 0 represents the con-
tractility of the gel and b > 0 is a high density coefficient.
The cubic power represents the contractile interaction of
two actin filaments and one myosin motor (supposed to be
present in the gel with a density proportional to that of
the actin filaments). We give in appendix D further details
on the numerical scheme. In fig. 7 we present both the an-
alytic variation of ρc with L and the numerical values ob-
tained at different times as we simulate the displacement
of the membranes. The two curves are in perfect agree-
ment. We also show three density profiles to illustrate the
transition between the single layer (left-hand side) and
cortical regime (right-hand side).

Fig. 7. Top: Evolution of ρc as a function of Lkd/vp in the
weakly contractile limit. The solid light blue line is an ana-
lytic integration of L from eq. (10). The dashed dark blue line
corresponds to the reported density at the midplane ρc during
the numerical simulation where L is varied continuously. The
parameters are a = −1ηkd, b = 2ηkd, ρ∞ = 0.1, ρ0 = 2.3. Bot-
tom: Density profiles chosen from the numerical simulation, for
Lkd/vp = 3, 8, 12 from left to right. The black vertical lines in
each density profile represent the membranes.

3.3.2 Intermediate contractile limit

In the intermediate contractile limit, the effective gel ten-
sion g has one local minimum and one local maximum.
We recall that g(ρloc max) ≤ g(ρ∞), where g(ρloc max) is
the value of g at the local maximum.

We start out with L = L0 and ρc = ρ0 and construct
solutions from ρ0 to smaller and smaller values of ρc, and
larger and larger values of L, until ρloc max. At that point,
L = L+

c . If we want to go on decreasing ρc, the only solu-
tion is for ρc to jump to the other value ρjump that verifies
g(ρjump) = g(ρloc max). At that other point, L = L−

c . Af-
terwards, we may go on decreasing ρc until ρ∞, with L
increasing continuously.

This raises the question of the existence of a solution
for any L, in other words whether L−

c = L+
c . We use the

expression of L(ρc) of eq. (10) and recall that g(ρloc max) =
g(ρjump). Writing L−

c −L+
c = L(ρjump)−L(ρloc max) yields

the integral of a function that always vanishes, so that
L−

c = L+
c = Lc.

In summary, we have found, in the intermediate con-
tractile limit, that the distinction between the cortical and
the single layer regime is clearly characterized by a critical
length between membranes Lc.

In the same way as for the weakly contractile limit, we
check our results numerically by simulating a very slow
displacement of the membranes. We take a larger value of
a in absolute value than for the weakly contractile limit
(the contractile properties are thus enhanced). In fig. 8 we
present both the analytic variation of ρc with L and the
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Fig. 8. Top: Evolution of ρc as a function of Lkd/vp in the in-
termediate contractile limit. The solid light blue line is an ana-
lytic integration of L from eq. (10). The dashed dark blue line
corresponds to the reported density at the midplane ρc during
the numerical simulation where L is varied continuously. The
parameters used are a = −3ηkd, b = 2ηkd, ρ∞ = 0.1, ρ0 = 2.3.
Bottom: Density profiles chosen from the numerical simulation,
for Lkd/vp = 2.5, 3.8, 4.1 from left to right. The black vertical
lines in each density profile represent the membranes.

numerical calculation versus time as we simulate the dis-
placement of the membranes. Both variations are in close
agreement. Near the critical length Lc, the numerical cal-
culation (dashed line) demonstrates smoother variations
than the analytical profile. This is due to the finite dis-
placement speed of the membranes.

3.3.3 Strongly contractile limit

Single layer and cortical regimes

We now focus on the strongly contractile limit. The profile
of the effective gel tension g has a local minimum and a
local maximum as before, but the contractile pressure con-
tribution to g is very important, e.g. g(ρloc max) ≥ g(ρ∞).
The construction of the variations of L as a function of ρc

starts as above. As L increases, ρc gets closer to ρloc max.
At this particular point, we try to find some stable value
of ρc ≤ ρloc max and such that g(ρc) ≥ g(ρloc max). This
leads to ρc ≤ ρ∞ which we have demonstrated to be im-
possible (in that limit the velocity field at the center is
infinite). We denote the distance at which the layers can
no longer be merged Lbreak = L(ρloc max).

We call Lbind = L(ρf ) the critical length for which
the separated layers (solution with discontinuous density
mentioned in eq. (11)) barely touch. Lbind corresponds to
twice the width of the single free layer. From eq. (11) we
have ρf ≥ ρloc max, and as L(ρc) is a decreasing function
of ρc we easily get Lbind ≤ Lbreak.

This reasoning demonstrates the existence of two so-
lutions for lengths L in the interval [Lbind, Lbreak]. One

Fig. 9. Top: Evolution of ρc as a function of Lkd/vp in the
strongly contractile limit. The solid light blue line is an ana-
lytic integration of L from eq. (10). The dashed dark blue line
corresponds to the reported density at the midplane ρc during
the numerical simulation where L is varied continuously. The
parameters are a = −4ηkd, b = 2ηkd, ρ∞ = 0.1, ρ0 = 2.3. Bot-
tom: Density profiles chosen from the numerical simulation,
for Lkd/vp = 2.2, 2.9, 3.2 from left to right. The black verti-
cal lines in each density profile represent the membranes. The
profile for Lkd/vp = 2.9 is plotted in the case of layers being
stretched apart (right solid arrows) and being pushed together
(left dashed arrows).

solution corresponds to the cortical regime with sharp de-
limited layers and ρc = ρ∞. The other solution corre-
sponds to merged layers, with ρc > ρ∞. It is the single
layer regime. For L ≤ Lbind the layers are merged. For
L ≥ Lbreak the layers are clearly separated.

Hysteresis effects

In order to determine in which regime the layers are for
a given L in the critical interval [Lbind, Lbreak], one must
rely on the history of the double layer.

We consider the thought experiment of two cortical
layers well separated and far apart. Infinitesimally slowly,
the membranes are moved closer to one another. If fluctu-
ations are small, the layers stay separated until L = Lbind.
At this critical length, they merge, the density at the cen-
ter jumps from ρ∞ to ρf . The system is now a single
layer. As the membranes are moved closer still, the den-
sity at the center increases continuously. Upon moving
the membranes apart the density at the center continu-
ously decreases. For L = Lbind, the density at the center is
ρf . Pulling the membranes further apart, the single layer
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starts to stretch, and the density at the center continues
to decrease. At some critical point, where ρc = ρloc max,
and L = Lbreak the layer breaks apart and forms two well
separated layers again, relaxing in the cortical regime.

This is well reproduced numerically, as illustrated in
fig. 9. The analytic integration of eq. (10) and the numeri-
cal simulation are in close agreement, and demonstrate the
hysteresis phenomenon between Lbind and Lbreak. Near
these critical lengths, the numerical curve (dashed line)
shows again smoother variations than the analytic profile.
This is again due to the finite displacement speed of the
membranes. We also present in fig. 9 density profiles to
illustrate the transition with hysteresis from single layer
(on the left-hand side) to cortical regime (on the right-
hand side).

4 Stability of a stretched single layer

The coexistence of two regimes in the strongly contractile
limit leads to the question of their relative stability. In
this section, we study the stability of the stretched sin-
gle layer. The general methodology for the study of the
stability of the solutions is a linear expansion for small
perturbations. Here this expansion is difficult and cannot
lead to a simple answer because the system reacts very
differently to a small addition or removal of matter. In-
deed, numerically, it is easy to observe that an addition of
matter on a stretched single layer leaves it intact. On the
contrary, a removal of matter may damage the merged
configuration irreversibly and the system relaxes to two
separate cortical layers.

That explains why we choose to study the stability of
the stretched single layer solutions in the following way:
we study numerically the impact of a small removal of
matter at the center of the domain, which respects the
symmetry of the steady state solution.

4.1 Qualitative discussion of stability

We perform the following “numerical experiment”. The
initial condition is a stretched single layer steady state
profile, into which a “hole” is introduced by lowering lo-
cally the density at the midplane. The hole depth ε is
varied (in units of concentration). The width of the hole
is chosen so that the hole is not too thin, but never wider
than the space between the layers of the separate regime
at L = Lbreak. The width of the hole is not varied, and
we checked that it has little impact on the final result.
We study the effect of the removal for various values of
L ∈ [Lbreak, Lbind).

This allows to draw a stability diagram for the
stretched layer in the plane L versus damage depth ε,
as shown in fig. 10. As expected, the more stretched the
single layer, the smaller the critical depth to break apart
the layer. As the layer is stretched up to L = Lbreak, al-
most any removal depth breaks the single layer into two
separated layers.
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Fig. 10. Stability of the stretched layer as a function of
the spacing between membranes (Lkd/vp) and the depth of
the hole performed (ε). Each numerical experiment is rep-
resented by a data point. Red crosses represent coordinates
that are unstable with respect to such a removal (e.g. the
single layer breaks apart), blue spots represent coordinates
that are stable. The dashed black line represents the ana-
lytical condition discussed in the text and corresponding to
Π(ρc(L)− ε) = Π(ρc(L)). It ensures that all points below the
line are stable. The numerical parameters used are the same
as in fig. 9.

An interpretation of these results is based on the con-
sideration of the initial velocity profile, just after the per-
turbation of the concentration profile. Let the velocity
field be written as v(z, t) = vs(z) + w(z, t) where vs(z) is
the steady state solution, and w(z, t) the time-dependent
correction to the steady state. In the same way we write
ρ(z, t) = ρs(z) + δρ(z, t). With these notations the stress
balance from eqs. (7) reads

2η∂zzw(z, t) = ∂zΠ(ρs(z) + δρ(z, t)) − ∂zΠ(ρs(z)).
(12)

Equation (12) yields, at time t = 0, a good intuition of
the initial velocity field induced by the perturbation.

We assume for simplicity that the hole in the concen-
tration profile is performed roughly on a domain where
ρs(z) � ρc. On that interval δρ(z, 0) = −ε with ε > 0.
Away from the hole, δρ(z, 0) = 0. We remind also the
boundary conditions on w(z, 0): w(−L/2, 0) = w(0, 0) =
w(L/2, 0) = 0.

Near the stability limit of the single layer (ρloc max),
the effective pressure as a function of ρ has a minimum.
Therefore, Π(ρc −ε) can either be greater or smaller than
Π(ρc). For instance, if ε is small and that we are far
enough from ρloc max, we have Π(ρc − ε) ≤ Π(ρc). Then,
from eq. (12) the velocity field w(z, 0) is positive for z < 0
and negative for z > 0. This actin flow thus contributes to
the healing of the layer, by filling up the initial hole. If, on
the contrary, ε is large and that we are close to the con-
centration ρloc max, e.g. close to the breaking point of the
single layer, Π(ρc − ε) > Π(ρc). Then, the resulting actin
flow w(z, 0) from eq. (12) contributes to the breaking of
the layer.
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Fig. 11. Stability of the stretched layer as a function of
the spacing between membranes (Lkd/vp) and the depth of
the hole performed (ε) for a two-dimensional geometry with
isotropic contractile properties. Each numerical experiment is
represented by a data point. Red crosses represent coordinates
that are unstable with respect to a removal of matter, blue
spots represent coordinates that are stable. The dashed black
line represents the analytical condition for stability in 1D dis-
cussed in the text. It is reported from fig. 10. The numerical
parameters used are the same as for fig. 9 with specifically
a = a′ = −4ηkd.

One must however consider the total velocity field at
the initial time v(z, 0) = vs(z) + w(z, 0) where the steady
state flow vs(z) always contributes to the healing of the
layer. The condition of monotonous increase of the pres-
sure is therefore only a sufficient condition for the healing
of the layer. The limit Π(ρc − ε) = Π(ρc) is reported on
fig. 10 as a dashed black line. On fig. 10 we verify that all
points beneath the line are stable. All points above the line
are not unstable: those closest to the line are still stable.
Altogether this analytical condition yields an interesting
intuition on the reasons for stability. The stability of the
layer is closely related to the contractility of the gel.

4.2 Two-dimensional anisotropy

We recall from eqs. (6) that the actin layer in two dimen-
sions has anisotropic contractile properties. Because con-
tractility is essential in the study of stability, we study here
the two-dimensional extension of the problem. Numerical
solutions require the expressions for the functions Πx(ρ)
and Πz(ρ). We write Πz(ρ) = aρ3 + bρ4 as in the one-
dimensional case, and choose Πx(ρ) = a′ρ3 + bρ4, where
a′ < 0 can be different from a and characterizes the con-
tractile properties in the x direction.

For completeness we study first the case of isotropic
contractility, e.g. a = a′ (this corresponds to an isotropic
distribution of the orientation of filaments θ in eq. (1)).
We perform the same “experiments” as in one dimension,
studying the evolution of a rectangular shaped hole in the
concentration profile at the center of the domain. Only the
depth of the hole is varied, keeping the width constant as
in the one-dimensional case, as well as the length in the
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Fig. 12. Stability of the stretched layer as a function of
the spacing between membranes (Lkd/vp) and the depth of
the hole performed (ε) for a two-dimensional geometry with
anisotropic contractile properties. Each numerical experiment
is represented by a data point. Red crosses represent coordi-
nates that are unstable with respect to a removal of matter,
blue spots represent coordinates that are stable. The dashed
black line represents the analytic condition for stability in 1D
discussed in the text. The solid black line represents the 2D
extension of this condition. It ensures that all points below the
line are stable. The numerical parameters used are the same
as for fig. 9 with specifically a = −4ηkd and a′ = −4.2ηkd.

x direction, parallel to the membranes. We also checked
that this parameter has little influence on the results.

The results for isotropic contractility are summarized
in fig. 11. As expected, the simulations prove to be fairly
comparable to the one-dimensional case. On fig. 11, only
one data point (Lkd/vp = 2.77 and a hole depth of 0.5)
differs from the one-dimensional case, which is unstable
whereas it is stable in one dimension. This difference has
little relevance on the global aspect of the diagram. More-
over, the analytical condition for the one-dimensional case,
reported on fig. 11, remains a good indicator for the sta-
bility of the stretched solutions.

We now perform the same “experiments” in the case
of anisotropic contractility. Phenomenologically we expect
contractility to be larger in the plane parallel to the main
filament direction than in the direction perpendicular. In
the single layer, where the membranes are closely facing
each other, we expect the filaments to be mainly parallel
to the plane of the membranes (x, y plane). In eq. (1),
this can be coarsely modeled by setting θ ≡ π/2. This
yields ζx − ζz = ζ ′/2 < 0 in eqs. (6), and a′ < a, that we
expected.

We summarize the results in fig. 12. We observe that
the increased contractility in the x direction results in the
extension of the unstable domain. The former condition
on Π obtained in the one-dimensional case, represented
by the dashed black line on fig. 12, stipulating that all
points below the line are stable, is no longer valid. This
is because the condition only considers Πz, and takes into
account only the coefficient a, e.g. only the contractile
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activity perpendicular to the membranes. Since a′ < a,
to write a valid analytical condition, we must now apply
the same reasoning as in subsect. 4.1 for the velocity u
in the x direction. We obtain that the stability of the
layer is insured if Πx(ρc − ε) ≤ Πx(ρc) and Πz(ρc − ε) ≤
Πz(ρc). The combined conditions yield the new solid black
line in fig. 12. This sufficient condition for stability is well
verified: all points beneath the solid line are stable points.

We conclude that an excess contractility in the tan-
gential direction destabilizes the stretched single layer.

On the other hand, if the filaments are mainly aligned
with the direction z, perpendicular to the membranes,
contractility is more important in that direction compared
to the x, y directions. This writes a < a′. Lowered contrac-
tility in the tangential direction would then stabilize the
stretched single layer.

5 Discussion

In this paper we have applied the theory of active gels to
investigate the merging of two cortical actin layers into
a single dense layer, similar in that way to the lamel-
lipodium. We have shown that the activity of the ac-
tomyosin gel is essential for the understanding of the
merging mechanism. Our main result is that a gel with
strong contractility shows hysteresis in the merging of
the two cortical layers. The transition from the single
dense layer to two separate layers of actin cortex hap-
pens through a stretched configuration of the single layer.
This stretched configuration has interesting stability prop-
erties, also monitored by contractility. As expected the
more stretched the single layer, the less it is stable. In ad-
dition, an excess contractility in the tangential direction,
due to alignment of the actin filaments along the mem-
branes, is a source of instability of the stretched single
layer.

In this study we did not consider the effect of actin
density gradients in the effective pressure for simplicity.
We do not expect that such terms play a major role in the
physics we presented. It is easy to verify that the addition
of a term proportional to ∇2ρ in the effective pressure
smoothens steep concentration profiles and suppresses the
artificial jumps in concentration that we found here. It
does not affect either the key role of contractility or the
hysteresis phenomenon. On stretched one-dimensional so-
lutions, it also has a stabilizing effect. This is interesting
because it could balance the destabilizing effect of tangen-
tial contractility in two-dimensions. It is also of physical
relevance because such a term could account for surface
tension between the gel and the solvent.

Another limitation of our work is that we did not con-
sider in details the orientation of the actin filaments. We
have imposed that they are either parallel to the mem-
brane with no preferred direction in the tangential plane,
or isotropically distributed. A more complete theory will
have to consider an orientation profile of the actin fila-
ments that is coupled to the concentration and velocity
profiles. For instance, in the study of the healing of a

wounded stretched single layer, one should consider the
variations of filament orientation around the wound. Ne-
glecting such variations is only possible when the elastic
modulus anisotropy is small. Here also, we do not expect
any qualitative changes in the results.

The assumption of symmetric conditions of actin poly-
merization on each membrane can also be discussed. The
cortex images of fig. 1(c) and (d) seem to indicate that the
layer attached to the substrate and the layer attached to
the “free” membrane have different thicknesses, although
the precise trend is unclear. Asymmetric boundary con-
ditions on the one-dimensional problem can be treated in
a similar way as the symmetric boundary conditions. Be-
cause actin is polymerizing from each side, and because
the velocity of the gel is a continuous function of z, the
velocity has to vanish at a point z0, which is no longer
the middle of the actin slab. At this point however the
density is still continuous, and we can redefine ρc = ρ(z0).
The graphical construction can then be conducted on each
side, in the same way as was done in sect. 3.3. For high ac-
tomyosin activities, the layers can bind at a distance equal
to the sum of their respective free layer widths. When
stretched again, they will separate at a larger distance.
The hysteresis predicted for the symmetric case should
also exist in the asymmetric one.

Several extensions of this work are possible. An im-
portant one would be to go beyond the steady state and
consider the kinetics of formation of merging of two corti-
cal layers. This requires the solution of the time-dependent
equations for the cortical layers and is left for future work.
Contractile waves are also often observed in cells [10] and
it would be interesting to investigate their existence within
the framework of our model.

Our predictions could be tested experimentally in dif-
ferent ways, not only to test the hysteretic behavior of the
acto-myosin gel but also to confirm that the theory of ac-
tive gels is able to describe in particular the acto-myosin
gel. Pulling the upper membrane of a cell fragment with
a well-defined surface and recording the force to pull and
push it would allow a direct visualization of the hysteretic
behavior of attachment of the actin layers. One could also
confine cells between parallel plates monitoring carefully
their separation and measuring the actin density profile
as a function of thickness. It would also be of interest to
track by fluorescence the actin distribution over time in
moving cells, especially at the separation point. In any of
these experiments, acto-myosin contractility could be in-
creased or decreased using for instance myosin activators
or inhibitors.

Other extensions of the theory could aim at a more
realistic description of the lamellipodium in cells, in par-
ticular by investigating the height and shape of a cell
from the near nucleus region to the edge of the lamel-
lipodium. Apart from a possible three-dimensional exten-
sion of the theory, this would require writing explicitly
force balance equations both perpendicular and parallel
to the substrate. It would also require to investigate the
longitudinal actin flux, and the variation in the polymer-
ization conditions near the membranes.



Page 12 of 14 Eur. Phys. J. E (2015) 38: 122

Author contribution statement

Several people contributed to the work described in this
paper. S.M., J.-F.J., and J.P. conceived the basic idea for
this work. S.M. developed the theory and the simulations
to identify the mechanisms of attachment of actin layers.
A.L.G. and D.R. designed and performed the experiments
to visualize lamellipodia. J.-F.J. and J.P. supervised the
research and, with D.R., helped with the development of
the paper.

The authors would like to thank Andrew Callan-Jones for dis-
cussions regarding [13]. They also would like to thank Pr.
Karsten Kruse for enlightning meetings on the theory of active
gels, and Pascal Kessler from IGBMC. They thank Matthieu
Piel for useful discussions concerning experimental suggestions
to check the predictions of the theory. Finally, they are in-
debted to Tatyana Svitkina and Günther Gerisch for helpful
discussions on the acto-myosin cortex and the lamellipodium.

Appendix A. Cell culture and observations

Synthetic polyamines (C8-BPA) were recently shown to
promote growth of lamellipodia within minutes [20]. In
our context, we used them and visualized the cell cor-
tex along the z-axis on single spread cells with different
experiments (see fig. 1). Symmetric (fig. 1(c)) and non-
symmetric (fig. 1(d)) cells were recorded depending on
the experimental conditions. When C8-BPA is added on
already spread cells, lamellipodia growth is promoted as
well, but cortical layers stay non-symmetric around the
nucleus.

Mouse NIH3T3 fibroblasts (ATCC, Manassas, VA)
were grown in high glucose Dulbecco’s Modified Eagle’s
Medium (Invitrogen, Reims, France) supplemented with
1% Pen Strep antibiotics (Invitrogen, Reims, France)
and 10% bovine calf serum (BCS, Sigma-Aldrich, Lyon,
France) at 37 ◦C and 5% CO2. For symmetric cells, C8-
PBA was added 1 hour and 20min after cell resuspen-
sion using trypsin treatment. For non-symmetric cells,
C8-BPA (100μM) was incubated 80min after seeding
or on spread cells for 10min before fixation with 3%
paraformaldehyde (Sigma-Aldrich, France) at 37 ◦C for
17min. Then, 0.5% Triton (Sigma-Aldrich, France) was
added for 3min to permeabilise cells, and samples were
washed twice for 5min with 1X PBS. For staining, we used
fluorescent phalloidin (Molecular Probes) for F-actin, rab-
bit anti-myosin IIB (Sigma-Aldrich, France) for myosin
with a fluorescent secondary antibody, and DAPI (4.6-
diamidino-2-phenylidole, Sigma-Aldrich, France) for the
nucleus. Cells were observed on a Leica SP5 inverted mi-
croscope with a 63× oil immersion objective (N.A. 1.4).
Images were acquired with stacks of x-y planes spanning
the cells width with z-step sizes of 0.25 μm. Planes along
various directions were reconstructed with Imaris and Im-
age J.

Appendix B. Tools for graphical resolution

In the following we work with adimensional variables such
that eq. (10) reduces to

L(ρc) = 2
∫ ρc

ρ0

ρ0

ρ2(g(ρ) − g(ρc))

× . . . exp
(
−

∫ ρ

ρ0

(ρ′ − ρ∞)
(ρ′)2(g(ρ′) − g(ρc))

dρ′
)

dρ (B.1)

and show the results of subsect. 3.3.

L is a decreasing function of ρc

We calculate L in the vicinity of the midpoint L(ρc(1+ε))
and we assume that ρc ≥ ρ0, and ε > 0. This leads, at o(ε),
to
L(ρc(1 + ε)) − L(ρc) =

2

Z ρc

ρ0

ρ0dρ

ρ2(g(ρ) − g(ρc))
exp

 

−
Z ρ

ρ0

ρ′ − ρ∞

(ρ′)2(g(ρ′) − g(ρc))
dρ

′
!

× . . . ε

"

g′(ρc)

(g(ρ) − g(ρc))
− g

′
(ρc)

 

Z ρ

ρ0

ρ′ − ρ∞

(ρ′)2(g(ρ′) − g(ρc))2
dρ

′
!#

+

Z ρc(1+ε)

ρc

ρ0dρ

ρ2(g(ρ) − g(ρc))
exp

 

−
Z ρ

ρ0

ρ′ − ρ∞

(ρ′)2(g(ρ′) − g(ρc))
dρ

′
!

× . . .

 

1+ε

"

g′(ρc)

(g(ρ)−g(ρc))
−g

′
(ρc)

 

Z ρ

ρ0

ρ′−ρ∞

(ρ′)2(g(ρ′)−g(ρc))2
dρ

′
!#!

.

There are two integrals to study. We study the first
integral and more particularly the function

F (ρ) =
g′(ρc)

(g(ρ) − g(ρc))

−g′(ρc)
(∫ ρ

ρ0

ρ′ − ρ∞
(ρ′)2(g(ρ′) − g(ρc))2

dρ′
)

.

The derivative of this function is

F ′(ρ) =
(ρ − ρ∞)

(g(ρ) − g(ρc))2

[
g′(ρ)(ρ − ρ∞)

ρ2
− 1

]
.

In the domains of interest, g′(ρ) is always negative and
ρ ≥ ρ∞ such that F ′(ρ) ≤ 0 and F (ρ) ≤ F (ρ0) ≤ 0. This
shows that the first integral can be rewritten as −αε with
α a positive constant.

We now consider the second integral and perform the
change of variables ρ = ρc(1 + ε). We get
Z ρc(1+ε)

ρc

ρ0dρ

ρ2(g(ρ) − g(ρc))
exp

 

−
Z ρ

ρ0

(ρ′ − ρ∞)dρ′

(ρ′)2(g(ρ′)−g(ρc))

!

(1+O(ε))

=

Z ε

0

ρ0dε

ερ2
cg′(ρc)

exp

0

@−
Z ε

ρ0
ρc

−1

„

ρc − ρ∞

(ρc)2g′(ρc)ε′
+O(1)

«

dε
′

1

A (1+O(ε))

=

Z ε

0

ρ0dε

ερ2
cg′(ρc)

exp

 

−(ρc − ρ∞)

(ρc)2g′(ρc)
ln

 

ε
ρ0
ρc

− 1

!

+ O(ε)

!

(1 + O(ε))

=

Z ε

0

ρ0dε

ρ2
cg′(ρc)

exp

„

ρc − ρ∞

(ρc)2g′(ρc)
ln

„

ρ0

ρc

− 1

««

× . . .

 

ε
−1− ρc−ρ∞

(ρc)2g′(ρc) + O

 

ε
− ρc−ρ∞

(ρc)2g′(ρc)

!!

(1 + O(ε))

= −
ρ0

ρc − ρ∞
exp

„

+

„

ρc − ρ∞

(ρc)2g′(ρc)
ln

„

ρ0

ρc

− 1

«««

 

ε
− ρc−ρ∞

(ρc)2g′(ρc)

!

+O

 

ε
− ρc−ρ∞

(ρc)2g′(ρc)
+1

+ ε
2

!

.
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With these notations, one sees that the highest-order
term in ε contributing to the full second integral of the
expansion of L(ρc(1 + ε)) − L(ρc), is the term

− ρ0

ρc − ρ∞
exp(. . .)ε−

ρc−ρ∞
(ρc)2g′(ρc) ,

which is negative, and that all other terms are at least

O
(
ε
− ρc−ρ∞

(ρc)2g′(ρc)
+1 + ε2

)
so in the end o(ε).

Finally we get

L(ρc(1 + ε)) − L(ρc) = −αε − βε
− ρc−ρ∞

(ρc)2g′(ρc) + o(ε),

with α and β positive constants. This result imposes that
L(ρc(1+ε)) ≤ L(ρc) and thus that L is a decreasing func-
tion of ρc.

We performed the above calculations assuming that
ρc ≥ ρ0. However, the principle of the calculation does
not change if we assume the reverse and the main result
stays identical.

As L goes to +∞, ρc converges to ρ∞

We perform an expansion of L by writing ρc � ρ∞(1 + ε)
where ε > 0.

L(ρ∞(1 + ε))

=

Z ρ∞(1+ε)

ρ0

ρ0dρ

ρ2(g(ρ) − g(ρ∞))
exp

 

−
Z ρ

ρ0

ρ′ − ρ∞

(ρ′)2(g(ρ′) − g(ρ∞))
dρ

′
!

=

Z ε

ρ0
ρ∞

−1

ρ0dε

ερ2
∞g′(ρ∞)

exp

0

@−
Z ε

ρ0
ρ∞

−1

„

ρ∞ε′

(ρ∞)2g′(ρc)ε′
+ O(ε

′
)

«

dε
′

1

A

=

Z ε

ρ0
ρ∞

−1

ρ0dε

ερ2
∞g′(ρ∞)

exp

„

−
„

ρ∞

(ρ∞)2g′(ρc)

„

ρ0

ρ∞
− 1

«««

(1 + O(ε))

=
ρ0

ρ2
∞g′(ρ∞)

exp

„

−
„

ρ∞(ρ0 − ρ∞)

(ρ∞)2g′(ρc)ρ∞

««

ln

 

ε
ρ0

ρ∞ − 1

!

+ O(ε).

Under this form we observe that

lim
ε→0

L(ρ∞(1 + ε)) = +∞.

As L goes to 0, ρc diverges to +∞

This result has little physical meaning, since we are not
much interested by situations corresponding to ρc ≥ ρ0, or
L ≤ L0. However, it is of mathematical interest to verify
that we can obtain solutions corresponding to all values
of L. For that we integrate the first line of eqs. (7), which
yields

2ρ0vp

L
+ ρ∞kd = kd

1
L

∫ L/2

−L/2

ρ(z)dz,

such that if we define ρm = 1
L

∫ L/2

−L/2
ρ(z)dz the average

value of ρ(z), ρm diverges as L → 0.

Appendix C. Conditions for a discontinuity in
the density profile

We first assume that there is at least one point of discon-
tinuity in the density profile. Let z0 be the closest point to
the left-hand side membrane, where a discontinuity hap-
pens.

Integrating the first line of eqs. (7) with respect to z
between z0−ε and z0+ε, and taking the limit ε → 0 yields
the continuity of flux

ρ(z0)+v(z0)+ = ρ(z0)−v(z0)−.

Integrating the second line alike yields the continuity
of stress

2η∂zv(z0)+ − Π(ρ(z0))+ = 2η∂zv(z0)− − Π(ρ(z0))−,

and integrating the second line twice yields the continuity
of the velocity

v(z0)+ = v(z0)−.

This last equation, combined with the continuity of
flux, tells us that a discontinuity in z0 is possible if and
only if the velocity vanishes in that point

v(z0)+ = v(z0)− = 0.

We now look for the density ρ(z0)− on the left of the
jump. On the interval [−L/2, z0) we can solve the equa-
tions analytically and obtain

v
∣∣
z=z−

0
=vp

ρ0

ρ(z0)−
exp

(
−

∫ ρ(z0)
−

ρ0

2ηkd(ρ′ − ρ∞)dρ′

(ρ′)2(g(ρ′) − g(ρc))

)
.

The only way to let v|z=z0− = 0 is that g(ρ(z0)−) =
g(ρc). This defines a unique ρ(z0)−, corresponding to the
solution of g(ρ(z0)−) = g(ρc), with ρ(z0)− ≥ ρloc max.

We need now find the value of ρ(z0)+. We use the con-
servation of the stress, that boils down to the conservation
of g, namely g(ρ(z0)−) = g(ρ(z0)+). This yields ρ(z0)+ =
ρc or ρ(z0)+ is the other root of g(ρ(z0)+) = g(ρc) with
ρc < ρ(z0)+ < ρloc max.

Suppose ρ(z0)+ is such that ρc < ρ(z0)+ < ρloc max.
Near ρ(z0)+, we have

∂zv
∣∣
z=z0,+

= −kd

(
1 − ρ∞/ρ(z0)+

)
< 0.

Hence v is negative near ρ(z0)+, for instance on the
interval (z0, z0+δz]. We recall here a simple reformulation
of eq. (8):

2η
dρ

dz
v = ρ(g(ρ) − g(ρc)).

On the interval (z0, z0 + δz], v is negative. Suppose we
have dρ

dz ≥ 0 on this interval. We thus get g(ρ) < g(ρc),
which implies necessarily, that ρ ≥ ρ(z0)+ and is thus in
contradiction with dρ

dz ≥ 0.
A similar contradiction can be found if we suppose that

dρ
dz is negative on this small interval.
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We are left with the other scenario: ρ(z0)+ = ρc.
In that case, we again have a strictly decreasing ve-

locity, and again a contradiction except if ρc = ρ∞. In
that specific case, a plateau density profile of any length
is possible.

As a conclusion, if there is a jump in the density profile,
it is possible only from the single density value ρ(z0)−
that verifies g(ρ(z0)−) = g(ρ∞) and ρ(z0)− > ρloc max.
We denote by ρf this value of density. ρf verifies g(ρ∞) =
g(ρf ) and ρf > ρloc max. The f stands for free because this
specific profile characterizes the cortical regime where the
layers are distinctly separated from one another. In this
regime, the density goes from ρ0 at the membrane to ρf ,
and then jumps to ρ∞ and stays at that value until the
boundary of the other layer is reached (where the density
jumps back to ρf and continuously rises to ρ0, as plotted
in fig. 6).

Appendix D. Numerical methods

The simulations were performed using a finite-volume
method to capture the sharp variations in the density pro-
file. The mesh is constituted in 1D of 100 boxes with dif-
ferent sizes adapted to capture the critical behaviors at
the midplane. The mesh was similarly adapted in 2D for
a 60 by 60 pavement of boxes. The initial condition on
the density profile is then propagated iteratively thanks
to the integrated version of eqs. (7).

The first step is to update the velocity profile via the
equilibrium of constraints equation. The second step is to
propagate the concentration profile in time via the con-
servation of mass equation. This is done using a standard
upstream/downstream explicit propagation, with autoad-
aptive time step.

For the simulations of sect. 3, implying temporal
change of the domain size (slow movement of the distance
between membranes), we renormalized the set of eqs. (7)
in space. This results in a new advection term in the mass
conservation equation, implying the time derivative of the
domain size. The relative speed of the membrane planes
was diminished until finding a convincing approximation
of the steady state profiles.

For the simulations of sect. 4, the characteristics of
the hole were monitored over time, for a sufficient amount
of time, but not until complete relaxation of the system,
to determine the outcome of the simulation. For instance,
if the hole filled up till 90% of its initial depth, we con-
cluded that the outcome of the experiment was a healed
lamellipodium.
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Reymann, L. Blanchoin, R. Boujemaa-Paterski, Curr. Biol.
20, 423 (2010).

5. J.-F. Joanny, K. Kruse, J. Prost, S. Ramaswamy, Eur.
Phys. J. E 36, 52 (2013).

6. H. Turlier, B. Audoly, J. Prost, J.-F. Joanny, Biophys. J.
106, 114 (2014).

7. T.D. Pollard, L. Blanchoin, R.D. Mullins, Annu. Rev. Bio-
phys. Biomol. Struct. 29, 545 (2000).

8. O. Medalia, I. Weber, A.S. Frangakis, D. Nicastro, G.
Gerisch, W. Baumeister, Science 298, 1209 (2002).

9. G. Salbreux, G. Charras, E. Paluch, Trends Cell Biol. 22,
10 (2012).

10. P.M. Bendix, G.H. Koenderink, D. Cuvelier, Z. Dogic, B.N.
Koeleman, W.M. Brieher, C.M. Field, L. Mahadevan, D.A.
Weitz, Biophys. J. 94, 3126 (2008).

11. K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, K. Sekimoto,
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New J. Phys. 14, 023001 (2012).

16. S. Günther, K. Kruse, New J. Phys. 9, 417 (2007).
17. G. Salbreux, J. Prost, J.F. Joanny, Phys. Rev. Lett. 103,

058102 (2009).
18. K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, Phys. Biol.
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