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ABSTRACT
Fluctuations affect nanoporous transport in complex and intricate ways, making optimization of the signal-to-noise ratio in artificial designs
challenging. Here, we focus on the simplest nanopore system, where non-interacting particles diffuse through a pore separating reservoirs.
We find that the concentration difference between both sides (akin to the osmotic pressure drop) exhibits fractional noise in time t with mean
square average that grows as t1/2. This originates from the diffusive exchange of particles from one region to another. We fully rationalize
this effect, with particle simulations and analytic solutions. We further infer the parameters (pore radius and pore thickness) that control this
exotic behavior. As a consequence, we show that the number of particles within the pore also exhibits fractional noise. Such fractional noise is
responsible for noise spectral density scaling as 1/f 3/2 with frequency f, and we quantify its amplitude. Our theoretical approach is applicable
to more complex nanoporous systems (for example, with adsorption within the pore) and drastically simplifies both particle simulations and
analytic calculus.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0047380., s

I. INTRODUCTION
A. General introduction

Fluctuations are ubiquitous in biological and artificial nanopores.
The nanopore structure,1–3 its position on the membrane,4 its inner
physical properties such as the local surface charge,5 and finally the
number of particles inside and outside of the pore are all inherent
sources of fluctuations. Their consequences on nanoporous trans-
port are intricate and leave, in particular, strong signatures in noise
measurements of currents. For example, the fluctuations of ionic
current through a nanopore usually exhibit strong frequency depen-
dence at low frequencies. Typically, the power spectral density of
the current scales as S(f ) ∼ 1/f α, where α = 0.5–2.0 according to
the specifics of the system. Such a power law dependence, gener-
ally referred to as low frequency noise, has been measured repeat-
edly in biological pores1,2,6,7 and in a great diversity of artificial
nanopores.2,8–19

Understanding precisely the origin and magnitude of such
noise is important for two reasons: First, to shed light on the trans-
port mechanism and allow us to track single molecule events.20–22

Second, to provide guidelines to optimize the signal-to-noise ratio
to improve sensitivity of single molecule detection experiments or
DNA sequencing.23–26 Most efforts on improving the signal-to-noise
ratio are experimental and have been directed toward developing
multilayered,27–29 surface treated pores to improve insulation30,31 or
adsorption effects.32 Yet, theoretical advances are necessary to open
new optimization avenues and improve our general understanding
of noise in nanoporous transport.

First-principles theories for fluctuations in nanoscale systems
have remained sparse as theoretical treatments face several chal-
lenges, such as solving equations in complex geometries33–35 or
accounting for all the various interactions between solute par-
ticles.36,37 Furthermore, noise on ionic currents does not result
from a single effect but from a combination of various effects
that are more or less important according to the system investi-
gated.14 Recent modeling advances have, nonetheless, pointed to
the crucial role of adsorption inside the pores,32,35 of ion–ion cor-
relations,37 and of ionic concentration.36 Most importantly, quan-
tification of the amplitude of different noise sources is seldom
available.
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Here, we come back to basics and explore the simplest pos-
sible setting for nanoporous transport, with a focus on reservoir
effects. We study non-interacting solute particles diffusing between
two compartments separated by a membrane with a single pore—
see Figs. 1(a) and 1(b). We investigate relevant observables in this
context: (i) the concentration difference ΔN between the two com-
partments (akin to the osmotic pressure drop at small concentration
differences38), (ii) the current of (uncharged) particles crossing the
membrane, and (iii) the number of particles within the pore. We find
that such a simple system features very non-trivial noise characteris-
tics. For example, fluctuations of the concentration difference grow
as a power law ⟨ΔN2(t)⟩∼ tp (and reach a plateau at long times). The
power law factor p = 0.5–1 according to the radius of the pore—see
Fig. 1(c). Notably, this results in a noise spectrum S(ΔN, f ) ∼ 1/f 1+p—
see Fig. 1(d). We will show that similar power law dependencies are
seen in the other observables (ii) and (iii). Importantly, such frac-
tional noise (with p = 0.5) is reminiscent of an intrinsic mathematical
property of Brownian walkers exchanging between two sides of an
imaginary boundary on a line.39,40 Its consequences in the context
of nanoporous transport have yet to be observed and rationalized.
Interestingly, such power law dependencies have been repeatedly
observed in experimental or theoretical observations albeit rarely
explained.1,2,17,32,35

In this paper, we fully rationalize, theoretically and numerically,
the emergence of fractional noise in these observables (i)–(iii). Our
numerical model is based on Brownian dynamics of non-interacting,
uncharged, particles. Our analytic treatment relies on a mapping
of the full 3D problem to a simpler 1D problem, preserving equi-
librium properties. This allows us to bypass geometric complexi-
ties34,35 and obtain analytic expressions. We show that the mapping
solutions reproduce exactly Brownian dynamics simulations in 3D.

It further builds a general numerical framework to account effi-
ciently for the effect of reservoirs without the introduction of arti-
ficial pore entry rates.41 Our analytic results shed light on the mech-
anisms at play. Interestingly, we find that 1/f 3/2 noise spectra are pre-
dominantly seen in thick pores (akin to channels), while 1/f 2 spectra
correspond to thin pores. We further find a 1/f 1/2 low frequency
decay for the number of particles within the pore. Importantly, we
are able to quantify their amplitude in terms of the parameters of the
system (pore size and pore thickness). From these results, we deduce
rules to optimize the signal-to-noise ratio in several cases. In partic-
ular, for currents associated with the number of particles within the
pore (akin to the number of charge carriers for charged species), we
find that the signal-to-noise ratio is maximized for short pores (in
contrast with long pores).

B. Setup to probe the effect of reservoirs
In this study, we consider a simple nanoporous system, where

particles—representing the solute species—may diffuse freely across
a membrane pore of characteristic width R set on a membrane
square of size 2Lm × 2Lm—see Figs. 1(a) and 1(b). In Fig. 1(a), the
pore is a circular pore of radius R. The radius R corresponds to
the accessible pore radius. Our derivation is not limited to circu-
lar pores and can be easily extended to other cross sections such
as slits. Let x be the direction orthogonal to the membrane plane
and y and z along it. x = y = z = 0 corresponds to the position of
the pore center on the membrane. We consider periodic boundary
conditions in y and z at distance Lm from the pore center [dashed
lines in Fig. 1(b)]. This means that the open area with respect to
the total area of the membrane is πR2

/4L2
m. When R ∼ Lm, this cor-

responds to a large pore (or, making use of the periodic boundary

FIG. 1. Fractional noise in a sim-
ple nanoporous system: (a) Brownian
dynamics of non-interacting particles
(red spheres). Particles cross the wall
through a circular pore of radius R.
(b) Corresponding schematic with sim-
ulation parameters and details. Dashed
(respectively, full) lines denote periodic
(respectively, reflecting) boundaries. (c)
Mean square concentration difference
⟨ΔN2(t)⟩ with time for different values
of the pore size. (d) Corresponding fre-
quency spectrum—shared legend with
(c). Data points correspond to N = 1000
Brownian walkers simulated in a box of
size L = 500 R. Values of Lm with respect
to R are indicated in the labels. The total
simulation time is 1.5 × 106 R2/D with a
time step of Δt = 0.05 R2/D.
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conditions, a membrane with multiple nearby pores). When R≪ Lm,
this corresponds to a small pore (or a membrane with isolated
pores).

The finite extent of the reservoirs is modeled by a reflection
boundary condition at x = ±L/2 parallel to the membrane. Our sim-
ulation setting therefore allows us to probe the effect of pore size
and reservoir size on translocation processes. Unlike other studies
introducing effective boundary conditions to model the effect of
reservoirs,33,41 here, we directly probe the effect of the presence of
reservoirs on the system by fully accounting for them. Note that in
the following, the most striking effects will arise from the presence
of reservoirs, in that they allow for exchanges of particles between
pore and reservoir regions, and not as much from their finite extent.

The N particles are modeled as Brownian walkers. The dis-
placement of each walker during a time Δt is given by

ΔXk =
√

2DΔt Wk, (1)

where Wk are Gaussian random variables with mean ⟨Wk⟩ = 0 and
variance ⟨W i

kW j
l⟩ = δi,jδk,l and ⟨⋅⟩ are averages over realizations of

the noise. Here, Xk = (xk, yk, zk) is the position of a walker, where k
is the running index over time, such that time is t = kΔt.

We introduce ΔN(t) = NR(t) − NL(t) as the difference between
the number of particles to the right of the membrane (particles for
which xk > 0) vs particles to the left (xk < 0). We are interested in
the statistics of this random variable ΔN, notably because it rep-
resents the concentration difference between both sides and, thus,
is linearly related to the osmotic pressure (at small concentration
differences).38

C. Summary
This paper is organized as follows.
In Sec. II, we explain in detail the emergence of fractional noise

[⟨ΔN2
(t)⟩ ∼

√
t] in the simple setting of a fully open membrane

[corresponding to the large pore regimes, R ∼ Lm, purple in Figs. 1(c)
and 1(d)]. This setup is equivalent to studying Brownian walkers on
a line. We rationalize fluctuations, correlation functions, and spec-
trum properties of both the number particle difference and current
observables. The most important finding here is that fractional noise
emerges spontaneously when studying random particles crossing
from one region to another—here, from the left to the right. As a
consequence, we expect fractional noise to be universal and emerge

in many different settings, which we investigate in the Secs. III
and IV.

In Sec. III, we investigate how these results are maintained
when the particles can only cross through narrow pores. We also
introduce the mapping of the 3D geometry to a 1D problem. This
allows us to fully rationalize the different behaviors obtained in
Figs. 1(c) and 1(d). The key takeaway here is that different behav-
iors are obtained not only with the pore size but also, especially, in
time. In general, in contrast with large pores, small pores R ≪ Lm
exhibit diffusive noise over longer time scales. Yet, within specific
time windows, fractional noise may also be observed across all pore
sizes.

In Sec. IV, we investigate how fractional noise impacts long
channels. Importantly, when the pore is long, it is possible to track
the number of particles within the pore, akin to the number of
charge carriers responsible for ionic conductance in ionic systems.
We focus mainly on the noise properties of this number in this sec-
tion. Because of its intrinsic nature, fractional noise is also observed
in the number of particles within the pore. Interestingly, the noise
spectrum of the number of particles within the pore exhibits not only
power laws expected for fractional noise but also an additional 1/f 1/2

power law scaling over a range of smaller frequencies.
In all sections, we discuss the results with the aim of optimizing

the signal-to-noise ratio.

II. ORIGIN OF FRACTIONAL NOISE
A. Limit case of a wide pore: Walkers on a line

To understand the emergence of fractional noise in nanopores,
we focus first on a limit case. Figure 1(c) shows that fluctuations in
the number difference grow as ⟨ΔN2(t)⟩ ∼ t1/2 predominantly for
wide pores R ∼ Lm. In this limit (R ∼ Lm), we can consider as a first
approximation that there is no physical membrane. Solute particles
are diffusing, and we consider their probability of crossing the now
“imaginary” wall at x = 0. Everything now happens as if the particles
were walking on a line—see Fig. 2(a).

B. Number difference
In average, ⟨ΔN(t)⟩ = 0. To further quantify the fluctuations of

ΔN(t), we, therefore, turn to its correlation function ⟨ΔN(t)ΔN(0)⟩.
ΔN can be conveniently written as ΔN(t + Δt) = ΔN(t)
+ 2IΔt(t)Δt, where IΔt(t) corresponds to the net current of

FIG. 2. Fractional noise for the concen-
tration difference on a line. (a) Illustra-
tion of random walkers on a line. Red
particles can cross the imaginary bound-
ary at the center. (b) Mean square con-
centration difference ⟨ΔN2(t)⟩ with time
for different values of box size L. Dots
correspond to BD simulations and full
lines to Eq. (9). Here, N = 1000 parti-
cles were simulated and ℓ is an arbi-
trary unit length. The total simulation time
was 1.5 × 106 ℓ2/D with a time step
Δt = 0.05 ℓ2/D.
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(uncharged) particles crossing the boundary x = 0 between t and
t + Δt. A particle that started in x < 0 (respectively, x > 0) at time
t and finds itself in x > 0 (respectively, x < 0) at time t + Δt will
contribute +1/Δt (respectively, −1/Δt) to the current. Note that the
definition of such a current does not pose any mathematical pathol-
ogy. Although a Brownian walker does cross a boundary infinitely
many times during Δt, here, IΔt(t) is finite since it counts whether
the walker effectively crossed (for example, a particle crossing three
times back and forth will contribute +1 − 1 + 1 = 1 time to the
current).

Summing up over time, we obtain ΔN(t) = ΔN(0)
+2∑k′=0...k IΔt(k′Δt)Δt → ΔN(0)+2 ∫t0 I(t1)dt1 in the limit of small
time steps. We can therefore write the correlation function for ΔN as

C(t, t′) = ⟨(ΔN(t) − ΔN(0))(ΔN(t′) − ΔN(0))⟩

= 4⟨∫
t

0
I(t1)dt1 ∫

t′

0
I(t2)dt2⟩. (2)

We will write ⟨ΔN2(t)⟩ = ⟨(ΔN(t) − ΔN(0))2
⟩ in the following to

lighten notations.

C. Statistics of the number difference
To determine the statistics of ΔN(t), it is therefore sufficient to

find the statistics of I(t). In the following, we will use a number of
standard results for diffusing tracers in one dimension (for detailed
proofs of these results, see Chaps. 2 and 3 of Ref. 42). We compute
statistics by splitting the calculation into two parts:

1. Jumps on a common interval
We are first interested in the correlation function at equal times,

Ccommon(t) = 4⟨∫
t

0
I(t1)dt1 ∫

t

0
I(t2)dt2⟩. (3)

As particles are uncorrelated, we can focus on a single particle.
We first derive the probability for the current to be +1/Δt dur-

ing Δt, meaning that the particle crossed from left to right. At any
time t, the particle is evenly distributed between the left and right
sides with a distribution ρ0(x) = 1/L, where L is the domain size. In
the following, we will assume t ≪ L2/D to neglect boundary effects
due to the finite extent of reservoirs. The full derivation accounting
for those effects is reported in Appendix B and shows no difference
at these timescales.

The probability that a step has size Δx during Δt is

p(s = Δx) =
1

√
4πDΔt

e−
Δx2

4DΔt , (4)

and therefore, the probability that the particle made a step greater
than Δx is

p(s ≥ Δx) = ∫
∞

Δx
p(s = s′)ds′ =

1
2
(1 − erf(

Δx
√

4DΔt
)), (5)

where here the upper integration bound is not L but +∞ as we
neglect the finite extent of reservoirs. The probability that the cur-
rent is +1 is equal to the probability that a particle came from the left
and made it to the right,

p(IΔt = +1/Δt) = ∫
0

−∞
ρ0(x)p(s ≥ −x)dx =

1
L

√
DΔt
π

. (6)

Since the probability to observe current in one direction or the other
is the same, we have p(IΔt = −1/Δt) = p(IΔt = +1/Δt). In average, the
current vanishes naturally, ⟨I(t)⟩ = 0.

If now we consider a longer time interval t, the derivation does
not change, and we can simply replace Δt → t. The probability that
the current integrated over time t is +1 is thus

p(∫
t

0
I(t1)dt1 = +1) =

1
L

√
Dt
π

, (7)

and similarly for the reverse current. The equal time correlation for
one particle therefore amounts to

⟨∫

t

0
I(t1)dt1 ∫

t

0
I(t2)dt2⟩ = (−1)2p(∫

t

0
I(t1)dt1 = −1)

+ (1)2p(∫
t

0
I(t1)dt1 = +1). (8)

Using Eqs. (3) and (7) and multiplying by the number of (indepen-
dent) particles, we find that

⟨ΔN(t)2
⟩ = Ccommon(t) = 8

N
L

√
D
π
√

t. (9)

As expected, concentration fluctuations scale as ⟨ΔN(t)2
⟩/N2

∼ 1/N.
In small sized systems such as cells or nanofiltration devices, we
therefore expect these fluctuations to be significant. The growth
law [Eq. (9)] agrees perfectly with Brownian dynamics (BD) simu-
lations, for very different numerical parameters—see Fig. 2(b) and
Appendix A for simulation details. Interestingly, Eq. (9) shows that
concentration fluctuations have large deviations with time. These
deviations are eventually bounded by the system size—we turn to
this limit next.

Limit value of fluctuations. At long enough times, the fluctu-
ations are bounded. Indeed, at long times, we can write NL = n and
NR = N − n, where n is a binomial random variable. A total of N
particles are placed on either side of the membrane with equal prob-
ability p = 1/2. n has a mean value ⟨n⟩ = pN = N/2 and variance
⟨(n − ⟨n⟩)2

⟩ = Np(1 − p) = N/4. Thus, we can calculate

⟨ΔN2
⟩ = 2⟨(NR −NL)

2
⟩ = 2⟨(N − 2n)2

⟩ = 2N. (10)

The limit law [Eq. (10)] is consistently seen in our simulations—see
Fig. 2(b).

The time tlate to reach saturation is set by equating Eqs. (9) and
(10) such that tlate =

π
16

L2

D . Naturally, this time corresponds to the
typical time L2

D to diffuse to the boundaries of the domain. In experi-
mental systems, the size of the reservoirs is typically L = 1 cm and
D ∼ 2 × 10−9 m2/s, yielding tlate ∼ 1 h. Such square root noise
dependence is therefore accessible to experimental systems.

2. Jumps on consecutive intervals
We are now interested in jumps on consecutive intervals of the

correlation function, as
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Cconsecutive(t1, t2) = ⟨∫

t1

0
I(t)dt∫

t1+t2

t1

I(t′)dt′⟩, (11)

where the first interval is of length t1 and the second interval is of
length t2. For simplicity, we will write in this section I(i), the current
on the ith interval. We focus as mentioned before on one particle.
As we have shown in the previous paragraph, the probability that the
integrated current is +1 during a length t1 is p(I(1) = +1) =

√
Dt1/π.

After that first jump, the particle is distributed as

ρ1(x) =
1

2L

√
π

Dt1
(1 − erf(

x
√

4Dt1
)), (12)

such that the probability that the particle crosses again (in the reverse
direction) during the second time lapse t2 is

p(I(2) = −1∣I(1) = +1) = ∫
∞

0
ρ1(x)p(s ≤ −x, t2)dx

=
1

2L
⎛

⎝
1 +
√

t2

t1
−

√

1 −
t2

t1

⎞

⎠
. (13)

The current correlations can be expressed in terms of the jump
probabilities as

⟨I(2)I(1)⟩ = −p(I(1) = +1)p(I(2) = −1∣I(1) = +1)

− p(I(1) = −1)p(I(2) = +1∣I(1) = −1), (14)

and coming back to N particles, we find that

Cconsecutive(t1, t2) = −4
N
L

√
D
π
(
√

t1 +
√

t2 −
√

t1 + t2). (15)

Statistics of ΔN . Assembling the different jumps, we have
C(t, t′) = Ccommon(t) + Cconsecutive(t, t′ − t), writing without loss of
generality t′ > t. We obtain

⟨ΔN(t)ΔN(t′)⟩ = 4
N
L

√
D
π
(
√

t +
√

t′ −
√

t′ − t). (16)

Equation (16) is exactly the expectation value of a fractional Brow-
nian walk43 with Hurst index H = 1/4. This allows us to conclude
that ΔN is a fractional Brownian walk with “diffusion coefficient”
D = 4 N

L

√
D
π . Notably, the emergence of such fractional noise is

totally intrinsic and relies on no specific assumptions for the sys-
tem. As such, it could serve as a remarkable textbook example for
fractional or subdiffusive noise.

Note that Eq. (16) can be inferred in many different ways.39,40

The proof presented here—in contrast with other more formal
proofs—sheds light on the physical mechanisms that result in such
peculiar statistics, namely, particles crossing forward and in a limited
amount of time turning around and crossing back. This is also at the
basis of the current statistics, which we study in Sec. II D.

D. Current of (uncharged) particles
As most experimental apparatus are sensitive not to an instan-

taneous current but to a current integrated over a short time interval,
say, τ, we define the experimentally relevant current (of uncharged
particles) as

Iτ(t) = ∫
t+τ

t
I(t1)dt1. (17)

Typically, τ−1
∼ 100 kHz. In our non-dimensional time scales, with

a typical length scale for nanopores ℓ ∼ 10 nm and D = 10−9 m2/s,
we have τ ∼ 100 ℓ2

D .
We now seek the correlations of Iτ(t). When t ≤ τ, we can split

the correlation function calculation as

⟨Iτ(t)Iτ(0)⟩ =
1
τ2 (⟨∫

τ

t
I(t1)dt1 ∫

τ

t
I(t2)dt2⟩

+ ⟨∫
τ

t
I(t1)dt1 ∫

t

0
I(t2)dt2⟩

+ ⟨∫
t+τ

τ
I(t1)dt1 ∫

τ

0
I(t2)dt2⟩), (18)

such that we can use previous results on correlation functions on
common and consecutive intervals. When t > τ, another splitting
may be done leading to a similar result such that the correlation is
simply (for any time t)

⟨Iτ(t)Iτ(0)⟩ =
N

Lτ2

√
D
π
(
√
∣t − τ∣ +

√
t + τ − 2

√
t). (19)

Equation (19) corresponds to a result derived in Ref. 44, for the
velocity autocorrelation function of a fractional Brownian walker—
up to subtleties associated with the different systems. Here, current
I(t) plays the role of the velocity since it is the derivative of the
number difference dΔN(t)

dt = 2I(t). Equation (19) agrees perfectly
with BD simulations—see Fig. 3(a). Notably, it features a negatively
correlated peak. This peak corresponds to particles that cross, turn
around, and cross back again. The maximum value of the nega-
tive peak is achieved in t = τ and is of significant magnitude since
⟨Iτ(t)Iτ(0)⟩
⟨Iτ(0)2⟩

=≃ −0.3 regardless of the system specifics.
We now turn to exploring the typical signature of the noise in

the current spectrum.

E. Spectrum of fluctuations
We define the spectrum of a random variable X as

SX( f ) = lim
T→∞
⟨

1
T
∣∫

T

0
ei2πftX(t)dt∣

2

⟩. (20)

Our simulations are long enough that we need not account for finite
acquisition time effects.45

1. Number difference spectrum
As the number difference ΔN may drive currents in more com-

plex systems (e.g., osmotic currents), we investigate its spectrum.
From Eq. (16), we obtain45

S(line)
ΔN ( f ) =

2 N
√

2D
L

1
(2π)3/2

1
f 3/2

. (21)

The spectrum of the noise, therefore, has a low frequency decay as
1/f 3/2—consistently seen in simulations; see Fig. 3(b) (blue curves).

2. Spectrum of particle current
The spectrum of the particle current is easily calculated from

Eq. (19) as
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FIG. 3. Current fluctuations (of uncharged particles) on a line. (a) Autocorrelation function of the current from BD simulations on a line (dots, multiplied by the integration time
τ2 for more clarity on a single plot). The full lines correspond to Eq. (19). (b) Spectrum of fluctuations for the number difference ΔN and two of the current traces Iτ shown
in (a). The full blue line corresponds to Eq. (21), and the full maroon and green lines correspond to Eq. (22) [the dashed lines correspond to Eq. (22), taking the sinusoidal
multiplicative factor sin2(2πfτ) ≡ 1 to show the power law decay]. Numerical parameters correspond to that of Fig. 2.

S(line)
Itau
( f ) =

N
Lτ2

√
D
π

sin2
(2πf τ)
(2π)3/2

1
f 3/2

. (22)

We again find a low frequency decay as 1/f 3/2, also seen in simula-
tions; see Fig. 3(b).

Statistics of particles on a single line decisively point to a low
frequency noise scaling as 1/f 3/2. This noise simply originates from
particles crossing from one region to another. In nanoporous sys-
tems, particles continuously cross from the reservoir to the pore area
and back. We therefore expect such intrinsic fractional noise to leave
traces. Nanoporous systems are yet more complex than the simple
line problem. In Secs. II and IV, we investigate how these results
hold or change in more realistic geometries.

III. FRACTIONAL NOISE IN NARROW PORES
When the pore mouth is extremely small, a regime different

from fractional noise is expected. In fact, we expect the return prob-
ability of crossing particles to vanish as the opening is so narrow
that particles cannot find it again in finite time. Simulations show

that ⟨ΔN2(t)⟩ ∼ t0.5−1. However, there is no systematic way of under-
standing the fluctuations of ΔN for narrow pores. This is the purpose
of Sec. III A.

A. Mapping to a simpler problem
We focus on the case of short pores—as depicted in Fig. 1.

Seeking solutions as in Sec. II of the full problem is tedious and
greatly dependent on the specific geometry of the pore. Instead, we
map the open pore problem to a simpler model that features similar
equilibrium characteristics—see Fig. 4(a).

In this setup—termed, henceforth, the rates model—a particle
performs a random walk freely on a passing line [corresponding to
the open pore cylinder—see shaded green in Fig. 4(a)]. The particle
can transition with rate qoff to a blocked line with a reflecting wall
in the center (corresponding to the membrane wall). The particle
transitions back to the open line with rate qon. The rates have to obey
detailed balance

qonAclosed = qoffAopen, (23)

FIG. 4. Mapping of a 3D problem to the—easy to solve—rates model. (a) Sketch of the model: walkers (red) perform a Brownian walk on two adjacent lines. On the black
line, walkers cannot cross at the center. Walkers can swap lines with rates qon and qoff. (b) Probability density for the particles on the crossing line [p(x)] and on the blocked
line [q(x)] starting on the left. Finite difference numerical solutions (dots, see Appendix A) and analytic solutions of Eq. (25) are presented. Arrows indicate the direction of
time, and profiles are represented, respectively, at t = 50, 500, 5000, 25 000 R2/D. Here, 2R = 3Lm such that qoff ≃ 1.86qon.
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where Ai are the areas corresponding to the closed or open parts
of the membrane. In the case of the circular pore of radius R on a
membrane square of size 2Lm × 2Lm, we get

qon

qoff
=

Aopen

Aclosed
=

πR2

4L2
m − πR2 . (24)

Let p(x, t) and q(x, t) be the probability that a particle is in the
passing or blocked state at position x and time t, respectively. They
obey the coupled set of equations

{
∂tp = −qoffp + qonq + D∂xxp,
∂tq = +qoffp − qonq + D∂xxq

(25)

with reflection boundary conditions on all walls ∂xq∣x=0± = 0,
∂xp∣x=±L/2 = ∂xq∣x=±L/2 = 0. q (but not p) is discontinuous in x = 0.
To infer the probability that, for example, the particle made it to
the right starting from the left during time t, we can choose ini-
tial conditions where the particle is distributed uniformly and in an
equilibrium way on the left. This amounts to p(x, t = 0) = p0Θ(x < 0)
and q(x, t = 0) = qoff/qonp(x, t = 0), where p0 = πR2

/4L2
mL and Θ is

the Heaviside function. The probability that the particle made it to
the other side at time t is then

p(∫
t

0
I(t1)dt1 = +1) = ∫

L/2

0
[ p(x, t) + q(x, t)]dx. (26)

Finally, we obtain the statistics of ΔN as

⟨ΔN2
(t)⟩ = 2 × 22

×N × p(∫
t

0
I(t1)dt1 = +1). (27)

Framed as such, the rates model has the same equilibrium character-
istics as the 3D pore. We therefore expect to recover similar noise
features and to be able to explain their dependencies. Eventually, we
will show that the rates model reproduces exactly the results of 3D
Brownian dynamics (BD) simulations.

B. Solving the rates model
Analytic solutions to the rates model defined by Eq. (25) can

be found in Laplace space. The method and results are reported
in Appendix B. Analytic solutions are in perfect agreement with
numerical finite difference solutions of the partial differential
equations—see Fig. 4(b). We find that

L [⟨ΔN2
⟩](s) =

4N
L

qon

qoff + qon

√
D

s3/2

1 + qon
qoff

√
s

s+qon+qoff
+ qon

qoff

, (28)

where L is the Laplace transform, s is the Laplace frequency,
q =
√

s/D, and q̃ =
√

s/D + (qon + qoff)/D. Here, Eq. (28) is writ-
ten at times t≪ L2/D, corresponding to a large box L. Equation (28)
does not have an analytic form in real time (to the best of our knowl-
edge). However, we may infer limiting behaviors in real time for a
few relevant cases.

C. Narrow pore regime (R ≪ Lm )
When qoff ≫ qon (for the narrow pore R ≪ Lm), we obtain an

analytic expression in real time as

⟨ΔN2
(t)⟩ =

4N
L

πR2

4L2
m

⎡
⎢
⎢
⎢
⎢
⎣

√
Dt
π

e−(qon +qoff)t

+

√
D( 1

2 + (qon + qoff)t)
√qon + qoff

erf(
√
(qon + qoff)t)

⎤
⎥
⎥
⎥
⎥
⎦

. (29)

1. Early times, t ≪ tearly = (qoff + qon)
−1

At very short times t ≪ tearly = (qoff + qon)
−1
∼ R2
/D, we find

(using the circular pore expressions for qon and qoff) that

⟨ΔN2
(t)⟩ =

t≪tearly

8N
L

πR2

4L2
m

√
Dt
π

. (30)

The fluctuations here are exactly that of a walk on a line corrected
by a “geometric” prefactor Aopen

Aclosed
= πR2

4L2
m

accounting for the open area
of the membrane. In fact, at early times, the particles that participate
to the fluctuations are only those that are found very close to the
pore—see the blue region in Fig. 5(a). They thus behave exactly as if
they were “seeing” no membrane wall—yet. This fractional behavior
is seen systematically at early times for all pore sizes—see Fig. 5(b).

2. Intermediate times, tearly ≪ t ≪ tint
At intermediate times, namely, when exchanges are now pos-

sible between domains in front of the pore and facing the wall tearly
≪ t ≪ tint (the limit tint will be defined in the following paragraph),
we find a diffusive regime

⟨ΔN2
(t)⟩ =

tearly≪t≪tint

4N
L

πR2

4L2
m

√
Dqoff t. (31)

Here, particle translocation events are dominated by exchanges
between the pore region and the rest of the reservoirs—see purple
in Fig. 5. Equation (31) can be further interpreted as an actual ran-
dom walk. When the opening of the pore is quite small, during the
characteristic time τoff = 1/qoff, a small quantity of particles may tran-
sition from one side to the other with probability δp = N

2
δV
V

, where
V = 4L2

mL is the total volume and δV is a small volume in front of
the pore mouth. This volume writes naturally δV = πR2ℓoff, where
ℓoff =

√
D/qoff is a relevant length scale inside the reservoirs. Parti-

cles further than ℓoff from the pore mouth will in average not make
it through the pore. If that small quantity of particles shifts right,
then ΔN = +2 with probability δp and −2 with same probability. The
steps in ΔN are uncorrelated; after time τoff, particles in front of the
pore have been remixed within the reservoirs and replaced by oth-
ers. Therefore, ΔN is a Brownian walk with time steps τoff and step
sizes of ±2 with probability δp. We find that

⟨ΔN2
(t)⟩ = 22

× 2δp ×
t
τoff

, (32)

and gathering all quantities, we recover Eq. (31). Such diffusive
behavior is also seen systematically at intermediate times for nearly
all pore sizes—see Fig. 5(b).
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FIG. 5. Mechanism for particle fluctuations across a 3D nanopore. (a) Sketch of the different fluctuation regimes for a small pore: the early regime in blue corresponds to
particles located close to the pore mouth, the intermediate regime in purple corresponds to exchanges between the open pore region (dashed green) and the rest of the
reservoir, and the later regime in gray corresponds to a well-mixed situation. (b) Number difference fluctuations with time for several values of R/Lm as indicated with the
various colors. Dots correspond to data from BD, and lines correspond to the analytic solution of Eq. (25). Matching at very early times and very narrow pores is not perfect
due to a lack of significant statistics when only a few particles translocate. The regimes are identified with the same color scheme as in (a). Simulation parameters correspond
to Fig. 1.

3. Later times, t ≫ tint
At later times, starting from Eq. (28) we find, in general,

(regardless of the pore size) L [⟨ΔN2
⟩](s) =

s→0
4N
L

√
D

s3/2 , yielding

⟨ΔN2
(t)⟩ =

t≫tint

8N
L

√
Dt
π

. (33)

At later times, whatever the size of the pore, we recover the bare
fractional noise. This later regime corresponds to a phase where
the reservoir is now sufficiently well mixed that it does not “mat-
ter” anymore whether particles are in front of the open pore or not.
This later regime may be observed only from times t ≥ tint, where
tint corresponds to the cross-over between the intermediate diffu-
sive [Eq. (31)] and late fractional noise [Eq. (33)]. This leads to

tint = (
8L2

m
π3/2R2 )

2
1

qoff
. Note that it is only possible to observe this late

time regime if tint ≤ tlate ∼
L2

D , the time when fluctuations reach the
2N limit. The later time regime is depicted in Fig. 5 in gray and is
indeed reached for a number of pores.

4. Conclusion for narrow pores
The number difference ΔN in narrow pores therefore experi-

ences four different phases:
● fractional noise (as

√
t) for t ≪ tearly ≃

R2

D ,

● diffusive noise for tearly ≪ t ≪ tint ≃
L4

m
R4 tearly,

● fractional noise (as
√

t) for tint ≪ t ≪ tlate ≃
L2

D ,
● saturation for t≫ tlate.
Note that here, the time to reach saturation of the fluctuations

tlate depends, in general, on the pore size. For very small pore sizes,
we can equate Eq. (31) with 2N to find that tlate ∼

L2
mL

DR . As tlate scales
inversely with the pore size, this increases the overall time scale over
which such regimes may be observed experimentally.

D. Wide pore regime (R ∼ Lm )
When qoff ≪ qon (for wide pores R ∼ Lm), L [⟨ΔN2

⟩](s)

= 4N
L

√
D

s3/2 such that we obtain for all times in very broad pores

⟨ΔN2
(t)⟩ =

8N
L

√
Dt
π

. (34)

We recover naturally the result for Brownian walk on a line.

E. Agreement with the 3D pore problem
To check how the rates model reproduces BD simulations

through a 3D pore, we overlap predictions from the analytic solu-
tion of the rates model and BD results—see Fig. 5. To complete the
mapping, we need to specify the value of the rates qon and qoff. The
phenomenological choice

q−1
off =

πR2

4D
and q−1

on =
4L2

m − πR2

4D
, (35)

obeys detailed balance Eq. (24). Here, we chose the rates as q = a2/4D.
a2 corresponds to the characteristic area associated with the rate as
expressed in Eq. (24). The factor 1/4 corresponds to 1/2d, where
d = 2 is the dimension of interest for diffusion parallel to the mem-
brane plane. Such a phenomenological choice accurately reproduces
BD simulations—see Fig. 5(a). The agreement is excellent over six
orders of magnitude in time and for many pore parameters. Figure 5
highlights the different regimes (early fractional, intermediate diffu-
sive, and later fractional). In particular, at later times, for a few inter-
mediate pores (R ∼ 0.2–0.5Lm), fractional noise is indeed observed
again after a diffusive interval.

Importantly, the rates model is not specific to the circular
geometry of the pore and would hold for other geometries such as
squares (see Appendix C) or rectangular slits.
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F. Noise spectrum in nanopores
1. Noise spectrum

Analysis of the different regimes in time of ΔN allows us to
draw conclusions on the noise spectrum of ΔN or Iτ . Here, for sim-
plicity, we focus on the noise spectrum properties of ΔN. Similarly,
as for SΔN , in the case of the single line, we can use the results of
Ref. 44,

● at high frequencies (early times), we have

SΔN( f ) =
f≫t−1

early

πR2

4L2
m

2N
√

2D
L(2π)3/2

1
f 3/2
=
πR2

4L2
m

S(line)
ΔN ( f ), (36)

● at intermediate frequencies,

SΔN( f ) =
t−1
early≫f≫t−1

int

πR2

4L2
m

8N
L

√
Dqoff

(2π)2
1
f 2 , (37)

● at low frequencies (at late times or if the pore size/pore
density is large enough),

SΔN( f ) =
f≪t−1

int

2N
√

2D
L(2π)3/2

1
f 3/2
= S(line)

ΔN ( f ). (38)

The regimes decaying as 1/f α with α = 3/2 or 2 are consistently
observed in Fig. 6 for the variety of pores investigated. The transi-
tions from one regime to another are smooth. As a result, extracting
the exponent α over a finite frequency range (Fig. 6, inset) can result
in the observation of α values continuously ranging between 1.5 and
2.0. This hints that in experimental conditions, where acquisition
times are finite, similar real valued exponents could be observed.

2. Optimizing signal-to-noise ratio in short pores

a. Currents driven by an external field. In most nanoporous
systems, currents are driven by an external field, say, E. For example,
ionic currents are driven by an electric field. Instead of deriving the
full consequences of an applied field on the fluctuations, here, we

FIG. 6. Noise spectrum in narrow short pores. Noise spectrum amplitude of the
number difference in units of time R2/D for various pore sizes R. Dots correspond
to BD data, and lines correspond to analytic results for the low frequencies [thick
full black line, Eq. (36)], intermediate frequencies [dashed, color coded, Eq. (37)],
and high frequencies [full, color coded, Eq. (38)]. The different regimes are high-
lighted with the same color code in the frequency spectrum, as in Fig. 5. (Inset)
Least-squares fit to find the power law exponent α in SΔN(f ) ∼ 1/fα over the
low frequency range (f ≤ 0.03D/R2). Simulation parameters correspond to that
of Fig. 1.

make a simple reasoning to infer the expected signal-to-noise ratio
in the linear response regime.

With an applied field, we expect to measure an average current
of particles scaling as ⟨Iext⟩ = G E, where E is the driving force and G
is the pore’s conductance, taking into account the geometric param-
eters of the system. Typically,16 for electric fields, we expect G ∼ R2.
As a consequence, we obtain (within the linear response regime)
that

⟨δI2
ext⟩

⟨Iext⟩
2 =

⟨I2
τ⟩

G 2E2
∼ {

1
R2 for f ≪ t−1

int
1

R4 for f ≫ t−1
int ,

(39)

depending on the range of frequencies under scrutiny. Here, δIext
= Iext − ⟨Iext⟩ corresponds to current fluctuations with respect to the
mean, and we used the scaling laws in Eqs. (36)–(38). In this setting,
we find that wide pores are required to maximize the signal-to-noise
ratio.

b. A note on osmotic currents. Although it remains to be
assessed in more advanced simulation frameworks (taking explic-
itly into account the solvent and its differential interaction with the
membrane), we expect fluctuations of the number difference, cor-
responding to the concentration difference, to induce fluctuations
in the osmotic pressure drop (at small concentration differences at
least) and, therefore, in osmotic driven currents. We therefore make
a short reasoning to infer the signal-to-noise ratio here. When a con-
centration difference, say,ΔN0 is applied between the two pore sides,
we expect a resulting osmotic current38 in average as ⟨Iosm⟩∝ ΔN0.
Osmotic current fluctuations therefore scale as

⟨δI2
osm⟩

⟨Iosm⟩
2 =
⟨ΔN2

⟩

ΔN2
0
∼

⎧⎪⎪
⎨
⎪⎪⎩

R2

L2
m

for f ≪ t−1
int

1 for f ≫ t−1
int ,

(40)

where we made use of the scaling laws in Eqs. (36)–(38). To max-
imize the signal-to-noise ratio, here, narrow pores, or pores in low
density on the membrane, can be used.

Overall, in short pores, fractional noise remains predominant
at high and low frequencies, while diffusive noise occurs at inter-
mediate frequencies. This results in noise spectral densities scal-
ing as 1/f 3/2 and 1/f 2. Optimizing the signal-to-noise ratio strongly
depends on the type of current investigated. Beyond the short pore
regime explored here, long pores (typically, at least as long as they
are wide) are also common in biological and artificial nanoporous
systems. The purpose of Sec. IV is to identify how fractional noise
impacts these long channels.

IV. NANOCHANNELS, NUMBER OF “CHARGE
CARRIERS,” AND EMERGENCE OF 1/f 1/2 NOISE

We now investigate geometries where the pore has a finite
length L0—see Fig. 7. We refer to these systems as nanochannels
in contrast with nanopores, which are infinitely short. Importantly,
here, we may define the number of (uncharged) particles within the
pore Nc, akin to the “number of charge carriers”—in analogy with
ionic solutions where electric conductance is directly related to the
number of charge carriers.46 We wish to understand what scalings
we can expect in the noise, especially for the number of particles
within the pore Nc.
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FIG. 7. 3D nanochannel noise regimes and mapping to a rates model. (a) 3D nanochannel geometry and different fluctuation regimes for a small pore: the initial regime (dark
gray) corresponds to particles located close to the pore mouths, the early regime (lighter blue) corresponds to particles all along the channel and close to the pore mouths, the
intermediate regime (purple) corresponds to exchanges between the open pore region (dashed green) and the rest of the reservoir, and the later regime in gray corresponds
to a well-mixed situation. (b) Mapping of a 3D nanochannel to a rates model similar to that of Fig. 4.

A. Very long nanochannels
As a simplistic yet insightful introduction to nanochannels, we

consider “channels” on a line—see Fig. 8(a), similar to the treatment
of Sec. II. On this line, the channel is delimited by two imaginary
boundaries in x = ±L0/2, where L0 is the length of the channel.
In BD simulations, we still use reflecting boundary conditions in
x = ±L/2 to mimic the effect of reservoirs. For simplicity, in ana-
lytic derivations, we assume L0 ≪ L and we neglect the influence of
boundaries.

1. Number difference
The relevant number difference corresponds now to the

difference in particle number between the right and left sides
ΔN = N(x > L0/2) − N(x < −L0/2). Similarly, as in Sec. II, this prob-
lem is amenable to analytic calculations. The fluctuations of ΔN are
easily expressed in terms of the probability to make jumps from
one area to another, with the added complexity that different jumps
contribute differently to ΔN. Particles jumping from the left to the
right (or inversely) will make a change +2 to ΔN (red arrow), while

FIG. 8. Fractional noise in long chan-
nels. (a) Illustration of long channels,
where we consider particle number
difference ΔN between the left and
right sides of imaginary boundaries in
x = ∓L0/2, respectively. We also con-
sider the number of particles Nc inside
the channel with −L0/2 < x < L0/2. Color
arrows indicate all jumps to the right
contributing to ΔN or to Nc . (b) Mean
square number difference ⟨ΔN2(t)⟩, and
(d) the number of particles within the
pore ⟨N2

c (t)⟩ with time for different val-
ues of the channel size L0. Dots are BD
data, and lines correspond to Eq. (46) for
(b) and Eq. (50) for (d). Slight mismatch
at the largest times can be explained
by limited data statistics. (c) Correspond-
ing spectrum SNc for the number of par-
ticles within the channel. Lines corre-
spond to Eq. (56). Legend for the size of
the channel L0 is shared between pan-
els (b)–(d). Simulation parameters cor-
respond to that of Fig. 2. N = 1000
particles were simulated, and ℓ is an
arbitrary length unit. The total simulation
time is 1.5 × 106 ℓ2/D with a time step
Δt = 0.05 ℓ2/D.
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particles jumping in and out of the channel will only contribute +1
to ΔN (blue arrows)—see Fig. 8(a). As in Sec. II, to make analytic
derivations simpler, we focus on times t ≪ L2/D such that we can
neglect the finite extent of reservoirs.

We focus on all the jumps toward the right. The probability
distribution of the particle’s position, provided that it started on the
left (x < −L0/2), is

pL(x, t) =
ρ0

2
[1 − erf(

x + L0/2
√

4Dt
)], (41)

where ρ0 = N/L is the concentration of particles. The probabilities to
jump from the left (L) to the channel (C) or to the right (R) are

pL→C(t) = ∫
L0
2

−
L0
2

pL(x, t)dx , pL→R(t) = ∫
+∞

L0
2

pL(x, t)dx, (42)

where here the upper integration bound is +∞ not L as we may
neglect the finite extent of reservoirs at short enough times.

If the particle started in the center, the probability distribution
of its position is

pC(x, t) =
ρ0

2
[erf(

x + L0/2
√

4Dt
) + erf(

L0/2 − x
√

4Dt
)], (43)

and the probability to jump from the center to the right is

pC→R(t) = ∫
+∞

L0
2

pC(x, t)dx. (44)

Finally, the fluctuations sum up to

⟨ΔN2
(t)⟩ = 2(22pL→R(t) + 12pL→C(t) + 12pC→R(t)), (45)

where factor 2 in front of the whole expression originates from the
fact that particles may jump with equal probability right or left. We
stress again that we abbreviate here ⟨ΔN2(t)⟩ = ⟨(ΔN(t) − ΔN(0))2

⟩.
Standard algebra yields

⟨ΔN2
(t)⟩ = 2N0[(1 + e−

L2
0

4Dt )

√
4Dt
πL2

0
− 1 + erf(

L0
√

4Dt
)], (46)

where N0 = ρ0L0. Equation (46) corresponds exactly with BD simula-
tions (for t≪ L2/D)—see Fig. 8(b). This problem may also be solved
in Laplace space, with a similar framework as in Appendix B.

Interestingly, the fluctuations of ΔN feature two relevant limits.
At early times, we find fractional noise

⟨ΔN2
(t)⟩ =

t≪L2
0/D

4
N
L

√
Dt
π

, (47)

that is exactly 1/2 of that observed at longer times

⟨ΔN2
(t)⟩ =

t≫L2
0/D

8
N
L

√
Dt
π

. (48)

At long times, everything happens as if the channel were infinitely
short, as particles have diffused way further than the typical length of

the channel. Fluctuations thus are dominated by jumps between the
left and right sides. At short times, however, fluctuations are domi-
nated by particle exchanges from the channel to the reservoirs and
vice versa—see dark gray in Fig. 7(a). They are similar in nature but
contribute twice as less to the fluctuations, therefore explaining the
scaling in Eq. (47). At intermediate times, fluctuations transit from
one regime to the other.

Importantly, for channels, fractional noise is preserved. This
is clear when one considers again the origin of fractional noise, as
explored in Sec. II. In fact, fractional noise occurs when observ-
ing the statistics of random particles transiting from one region to
another. For channels, where particles transit from reservoir to pore
and pore to reservoir, one thus naturally expects to witness fractional
noise. This highlights the universality of fractional noise.

2. Number of particles within the pore: “Charge
carriers”

In the channel problem, we may also investigate the fluctua-
tions of the number of particles Nc(t) present inside the channel
(with −L0/2 < x < L0/2). Nc(t) is akin to the number of charge car-
riers (although here the particles are not charged), which is essential
to understand ionic currents in nanoporous systems.16 The average
number of particles in the channel is ⟨Nc(t)⟩ = ρ0L0 ≡ N0. We can
then write the fluctuations as

⟨N2
c (t)⟩ = 2(12pC→R(t) + 12pL→C(t)), (49)

where we abbreviated ⟨(Nc(t) −Nc(0))2
⟩ = ⟨N2

c (t)⟩ and 12 high-
lights, as in Eq. (45), the contribution, e.g., +1 to Nc (12 to N2

c ), when
a particle goes from the left to the center. We obtain

⟨N2
c (t)⟩ = 2N0[(1 − e−

L2
0

4Dt )

√
4Dt
πL2

0
+ 1 − erf(

L0
√

4Dt
)]. (50)

This analytic result corresponds exactly with BD—see Fig. 8(d). The
fluctuations of Nc feature two relevant limits. At early times, we find
fractional noise

⟨N2
c (t)⟩ =

t≪L2
0/D

4
N
L

√
Dt
π

, (51)

corresponding exactly to the early time regime for the number dif-
ference, Eq. (47). In fact, fluctuations of Nc are also dominated by
particles in the vicinity of the pore mouth. At longer times, the
fluctuations plateau,

⟨N2
c (t)⟩ =

t≫L2
0/D

2N0. (52)

This is naturally expected, for the same reason as a plateau 2N is
reached at long times for the number difference.

3. Spectrum of the number of particles within the pore
As fractional noise is also seen in the number of particles within

the pore, we therefore expect its spectrum SNc to contain a signature
of fractional noise as 1/f 3/2. Such behavior is indeed observed for
large enough frequencies—see Fig. 8(c). However, for low frequen-
cies (long times), it is not straightforward to understand the noise
spectrum dependence, as the fluctuations Nc saturate.
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Based on the analysis of jumps mentioned above and following
the method in Ref. 33, we can completely calculate the frequency
spectrum. The correlation function of the number of particles within
the pore simply corresponds to the probability that the particle did
not leave the channel,

⟨Nc(t)Nc(0)⟩ = 1 − 2pC→R(t). (53)

This can be simply evaluated as

⟨Nc(t)Nc(0)⟩ = N0[(e−
L2

0
4Dt − 1)

√
Dt
πL2

0
+ erf(

L0
√

4Dt
)]. (54)

When the particles have diffused beyond the channel’s extent
(t ≫ L2

0/D), this correlation function decays as 1/
√

t and therefore
continues to grow significantly when integrated over time (at least
for times t≪ L2/D). As a result, we may expect the spectrum at zero
frequency to diverge as well—and not to saturate (as is seen, e.g., in
Ref. 33). To infer the analytic expression for the spectrum, we write
the Laplace transform of the correlation

L [⟨Nc(t)Nc(0)⟩](s) = −N0
2
√

D
L0

1 − e−L0
√

s/D

s3/2
, (55)

and simply

SNc( f ) = Real[L [⟨Nc(t)Nc(0)⟩](2iπf )]. (56)

Analytic expansions of Eq. (56) show the expected frequency decay
at high frequencies,

SNc( f ) =
f≫D/L2

0

2 N
√

2D
L

1
(2π)3/2

1
f 3/2

. (57)

At low frequencies, a decay as 1/f 1/2 emerges

SNc( f ) =
f≪D/L2

0

N
L2

0
√

2DL
1

(2π)1/2

1
f 1/2

. (58)

Both decay laws are consistently obtained in BD simulations; see
Fig. 8(c). Equation (58) is quite interesting as it shows the dramatic
consequence of the slow decay in the correlation function on the
noise spectrum. Overall, this demonstrates that low frequency noise
is readily observed in our simple system for the number of parti-
cles within the pore. Brownian motion is thus sufficient to trigger
intriguing noise features, with peculiar 1/f α dependence—without
resorting to more complex effects.

At extremely small frequencies f ≪ D/L2, corresponding to
very long times t ≫ L2/D, the particles feel the finite extent of the
reservoirs, and one eventually finds a saturation of the frequency
spectrum SNc( f ) = N

8D
L2

0
L2

1
(1−L0/L)2 . This saturation would be rarely

observed in experiments as it would require acquisitions over days
(taking, e.g., L = 1 cm and D = 2× 10−9 m2/s) and therefore is not rel-
evant, in general. Note that this saturation is not comparable to the
saturation observed in Ref. 33, which examines infinite reservoirs.

When considering realistic geometries, with a thick membrane,
we may therefore expect different noise regimes according to the rel-
ative values of the pore width (radius, or typical cross section size)

and the pore length. Section IV B is dedicated to summarizing the
scalings and transitions between behaviors in the general nanochan-
nel geometry, with a focus on the number of particles within the
pore.

B. General geometry and consequences for charge
carrier fluctuations
1. Mapping to a rates problem and limit regimes

Similarly, as for the narrow problem, we can map the
nanochannel problem to a rates problem—see Fig. 7(b). We use sim-
ilar notations and take p(x, t) and q(x, t) as the probability that a
particle is in the passing or blocked state at position x and time
t. Compared to the short pores in Sec. III, here, over the channel
length L0, the blocked state does not exist; the passing state does not
exchange with the blocked state. As in Sec. III, we can solve for the
probability distribution functions p and q in Laplace space and then
calculate the fluctuations of ΔN and Nc using a similar formalism as
for Eq. (45). Full solutions are detailed in Appendix D.

The results (both analytic and of BD simulations) point, as
expected, to an interplay of channel-like behavior at short times,
as seen in Sec. IV A, and pore-like behavior at longer times, as in
Sec. III. We can distinguish five phases (considering pores that are at
least as long as they are wide L0 ≳ R):

● [initial, dark gray in Fig. 7(a)] For t ≪ tearly =
R2

D , fractional
noise [⟨ΔN(t)2

⟩ = ⟨Nc(t)2
⟩ = 4c0GR

√
Dt], where GR is a

geometric prefactor taking into account the details of the
channel geometry and c0 is the average particle concentra-
tion.

● [early, light blue in Fig. 7(a)] For tearly ≪ t ≪ tchannel = L2
0/D,

fractional noise with twice as large amplitude [⟨ΔN(t)2
⟩

= ⟨Nc(t)2
⟩ = 8c0GR

√
Dt]

● [intermediate, purple in Fig. 7(a)] For tchannel ≪ t ≪ tint

≃
L4

m
R4 R2
/D, diffusive noise in the number difference, satura-

tion for Nc.
● [later, gray in Fig. 7(a)] For tint ≪ t ≪ tlate ≃

L2

D , frac-
tional noise in the number difference [⟨ΔN(t)2

⟩ = 8ρ0
√

Dt],
saturation for Nc.

● [final] For t≫ tlate, saturation for all variables.
Full derivations and agreement of BD simulations with analytic

results showing the interplay of these five regimes are reported in
Appendix D (Figs. 11 and 12). We now turn to the investigation of
the noise spectrum.

2. Spectrum of the number of particles within the pore

a. Noise spectrum. Following a similar approach as in
Sec. IV A, we find the Laplace transform of the correlation function

L [⟨Nc(t)Nc(0)⟩](s) = −N0
4
√

D
L0

1
s3/2
(1 − e−qL0)

×
q̃(qon + qoff)

e−qL0 qoff(q̃ − q) + qqoff + (qoff + 2qon)q̃
,

(59)

where we recall that q =
√

s/D and q̃ =
√

q2 + (qon + qoff)/D. Here,
N0 = ⟨Nc(t)⟩ = c0πR2L0 is the average number of particles within the
pore and c0 is the particle concentration. Using Eq. (56), we can fully
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obtain the spectrum of fluctuations for Nc that agrees remarkably
with BD simulations—see Fig. 9.

Expanding Eq. (59), it is possible to obtain limiting relevant
regimes for the fluctuation spectrum. Here, we assume that the chan-
nel is rather isolated on the membrane Lm ≳ L0 (corresponding to
qon ≪ D/L2

0) such that three characteristic behaviors emerge in the
fluctuation spectrum:

● at very low frequencies, the 1/f 1/2 decay is observed,

SNc( f ) =
f≪qon

qon

qon + qoff
N0

L0
√

2D
1

(2π)1/2

1
f 1/2

, (60)

which is exactly Eq. (58) multiplied by a geometric prefactor
qon

qon+qoff
= πR2

4L2
m

corresponding to the open pore area (for a cir-
cular pore of radius R). As mentioned earlier, this regime is
not seen in theoretical derivations of Ref. 33. In fact, Ref. 33
assumes an infinitely small pore on a membrane, giving
qon → 0, and hence, the 1/f 1/2 regime does not appear.

● At intermediate frequencies, we find a plateau

SNc( f ) =
qon≪f≪L2

0/D

2
3

N0
L2

0

D
(1 +

6
L0

√
D

qoff
). (61)

This (temporary) saturation corresponds to intermediate
times where no significant exchange with the reservoirs is
possible yet. Equation (15) of Ref. 33 also predicts a satura-
tion for the circular pore SNc( f ) = 1

3 N0
L2

0
D (1 + 3π

2
R
L0
), while

we find SNc( f ) = 2
3 N0

L2
0

D (1 + 3
√

π
R
L0
). These slight differ-

ences originate from the approximate model for reservoirs
in Ref. 33.

● At high frequencies, we recover the 1/f 3/2 decay,

SΔN( f ) =
f≫D/L2

0

2N0

L0

√
2D

1
(2π)3/2

1
f 3/2

. (62)

This decay corresponds exactly to that observed in infinitely
long channels Eq. (57). Reference 33 predicts a similar
regime for small pores (with an amplitude twice as large)
yet only at intermediate frequencies (f ≪ D/R2). At large
frequencies, Ref. 33 finds a decay as 1/f 2. These differ-
ences originate from the approximate model for reservoirs
in Ref. 33. A graphical comparison with Ref. 33 is reported
in Appendix D (Fig. 13).

In contrast with very long channels, actual channels feature a
plateau in the frequency spectrum. The extent of this plateau in the
frequency spectrum is longer if the channel is more narrow. For
example, the onset of the 1/f 1/2 regime occurs at much smaller fre-
quencies for the long channel of Fig. 9(b) than for the short channel
of Fig. 9(a) [hence, it is not seen in Fig. 9(b)]. Other numerical setups
also observe the emergence of such a plateau.35

b. Optimizing signal-to-noise ratio We now discuss how our
results can be harnessed to optimize the signal-to-noise ratio for cur-
rents related to the number of particles within the pore. Similarly,
as in Sec. III, if an external field E is applied, we expect to measure
an average particle current scaling as ⟨Iext⟩ = ⟨G ⟩E, where G is the
pore’s conductance. Yet, conductance (at large enough concentra-
tions, for electric fields) is proportional to the number of charge car-
riers.16 Although our particles are uncharged, we expect that, e.g., for
strong electrolytes and systems where charge effects are not predom-
inant, the results uncovered for uncharged particles would translate
for charged species. We therefore use Nc as a representative for the
number of charge carriers,

⟨δI2
ext⟩

⟨Iext⟩
2 =
⟨δG2
⟩

⟨G⟩2
=
⟨N2

c ⟩

N2
0
∼

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1/c0L2
m for f ≪ qon

L2
0/N0 for qon ≪ f ≪ D/L2

0

1/N0 for f ≫ D/L2
0.

(63)

The signal-to-noise ratio can thus be maximized working at high
concentrations (large c0 and N0) in quite short pores (L0). Narrow
pores (small R) decrease the signal-to-noise ratio (by decreasing N0),
and therefore, short pores are preferred in this setting where noise
originates from purely diffusive mechanisms.

V. CONCLUSIONS AND DISCUSSION
A. Emergence of fractional noise in nanoporous
systems

Fractional noise originates from particle exchanges between
one region and another. In nanoporous systems, such exchanges are
ubiquitous as solute particles go from the reservoir to pore and pore
to reservoir. As a consequence, fractional noise emerges naturally
in nanoporous systems. It yields fluctuations in time scaling as

√
t

and traces in the low frequency noise spectrum decaying as 1/f 3/2.
We have demonstrated the presence of such low frequency traces
in various pore geometries. Brownian motion is thus already a key

FIG. 9. Noise on the number of particles
within the pore in various pores. Noise
spectrum of Nc for (a) broad pores with
R = 0.4Lm and (b) narrow pores with
R = 0.02Lm for different pore lengths
as indicated in the shared legend. Dots
are results from BD simulations. Here,
the pore is square with side 2R. Full
lines correspond to the analytic result
of Eq. (59). Other simulation parameters
correspond to that of Fig. 1.
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ingredient to trigger such low frequency noise—without resorting to
more complex effects.

Such 1/f 3/2 dependence in the noise spectrum has been consis-
tently seen in many different settings—though never rationalized as
a generic feature inheriting from fractional noise. In artificial sys-
tems, 1/f 3/2 has been measured17 and also 1/f 2 in narrow pores.1,2

In more advanced numerical systems (including adsorption in the
inner pore as compared to our simulations), 1/f 3/2 dependencies
have been seen in the number of particles present within the pore.35

In approximate theoretical models, 1/f 3/2 and 1/f 2 have been consis-
tently seen as well.22,33,41 These results point to the fact that fractional
noise decaying as 1/f α with α = 1.5–2 prevails in real systems and
indeed has consequences even when more complex effects are at
play.

We also discussed a 1/f 1/2 dependence in the noise spectrum
for the number of particles within the pore (akin to the number
of charge carriers for charged particles), appearing for frequen-
cies f ≪ L2

m/D. Similarly, low frequency noise decaying as 1/f α

with α ≃ 0.5 has also been observed in a few experimental or
numerical systems.11,35 However, it is harder to speculate that frac-
tional noise is the origin of such measurements. In fact, it involves
very low frequencies, either not attainable experimentally or were
a number of other processes may very well be at play (such as
adsorption/desorption.35)

The effect of reservoirs can be reduced to a one-dimensional
rates problem. In this work, we have introduced a method to map
a complex 3D geometry with reservoirs and pores to a simple 1D
geometry (or more precisely 2 × 1D). This mapping relies on tran-
sition rates from the passing to the blocked lines and vice versa.
These rates are established from detailed balance equilibrium and
do not rely on any additional assumption. Remarkably, such a map-
ping allows us to reproduce with perfect accuracy the results of 3D
simulations. It also opens perspectives to drastically simplify numer-
ical simulations (by simulating particles on 1D lines instead of 3D
reservoirs) and analytic calculations.

Note that this is in sharp contrast with other theoretical investi-
gations, which rely either on approximate entrance and exit rates in
the pore33,41 or on approached, simplified geometries.35 It also allows
us to probe efficiently the effect of different pore geometries.47

The mapping has great potential to reduce the cost of sim-
ulating large reservoirs and probe further effects on nanoporous
transport. For example, the mapping could easily be extended to
the investigation of more varied geometries, adsorption within the
pore,35 or equilibrium reactions at boundaries mimicking electrodes.
Its applicability to other systems remains to be assessed. For exam-
ple, when charges are added, and electric fields may affect the motion
of ions significantly between regions, such a mapping may have to be
adapted.

B. Further discussion
In essence, fractional noise is expected to occur in many sys-

tems beyond nanoporous transport. For example, such fractional
noise or 1/f 3/2 has been observed in the context of electrochemistry
at surfaces.48,49 Furthermore, fractional Brownian walks have been
used to model or explain subdiffusion patterns for molecules such
as mRNA or other large molecules evolving in crowded environ-
ments such as cells50,51 or with adsorption to surfaces.52 It remains

to be assessed whether such fractional behavior originates from the
same physical principles (namely, particles transitioning between
one region and another) or from other mechanisms.

Interestingly, our study also shows how crucial the parameters
of the experimental measurement may affect observation. For exam-
ple, fitting of the low frequency noise over only a few decades may
lead to a variety of decay exponents [as is observed in Fig. 5(b)].
Furthermore, currents depending on the acquisition frequency may
experience more or less noise. Acquisition frequency dependency of
nanopore conductance has been measured in specific cases.53

Beyond this equilibrium context, it remains to be assessed how
fractional noise survives out-of-equilibrium. For example, we can
expect the probability of events where particles exchange back and
forth from the pore to the reservoir to decay with an applied exter-
nal field. This may result in a non-linear dependence of the noise
with the applied external field. To some extent this is reminiscent—
although implying a different mechanism—of other non-linearities
depending on the applied field, for example, in conductivity mea-
surements of charged solutions.54

ACKNOWLEDGMENTS
S.M. is indebted to Aleksandar Donev for acute scientific advice

and numerous discussions. S.M. recognizes the help of Michel Pain,
who pointed to relevant references in the pure math literature asso-
ciated with this problem. S.M. is further thankful to Alejandro
L. Garcia, Amaury Hayat, Miranda Holmes-Cerfon and Benjamin
Rotenberg for fruitful discussions. S.M. was supported, in part, by
the MRSEC Program of the National Science Foundation under
Award No. DMR-1420073. S.M. acknowledges funding from a
Marie Sklodowska Curie fellowship under Award No. 839225—
MolecularControl project.

APPENDIX A: NUMERICAL METHODS
1. Brownian dynamics simulations

Brownian dynamics of particles translocating through pores are
implemented using a custom made Python routine.

a. System parameters
The simulation is performed in non-dimensional time and

length scales. The length scale of reference is set to be the pore size R
and the time scale of reference R2

D . In general, the time step was taken
to be Δt = 0.05 R2

D and is much smaller compared to the smallest time
scale of the system R2

D . In general, N = 1000 particles were simulated
over 3 × 107 time steps. Other system parameters (such as box size L
and membrane size Lm) are always specified in figure captions where
the relevant data are shown.

In systems made of particles on a line, where no pore size is
defined, we use ℓ as the unit length and ℓ2/D as the unit time.

b. Dynamics
The noise generation is done through Python’s numpy random

number generator. At each time step, for each particle, a random
number with standard normal distribution (numpy.random.randn)
is generated and the particle’s position is updated via Eq. (1). For
each independent simulation, the seed is set to a different value.
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Reflections on the reservoir walls and on the membrane are imple-
mented using De Michele’s algorithm.55 All measured quantities
were thoroughly checked to be independent of simulation param-
eters. In particular, they were checked to be independent of the time
step Δt.

We stress that the particles are intended to be the most simple
Brownian walkers. They are non-interacting and point-like parti-
cles.

2. Partial differential equation solvers
To solve numerically the rates problem defined by Eq. (25),

a standard forward Euler scheme was implemented in a custom
made Python routine. The numerical solutions were independent of
the chosen time and space step. In general, the time step used was
Δt = 0.05 − 0.005 R2

D (increasing to larger values after smoothing out
of the initial step functions) and space step Δx = L/(Nx − 1), with
Nx = 2000. With L = 500R in general, this gives Δx = 0.25R, and
therefore, Δt≪ Δx2/D is always verified, ensuring the stability of the
forward Euler scheme.

APPENDIX B: SOLVING THE RATES PROBLEM
To solve the rates problem defined by Eq. (25), we focus on the

eigenvectors of the partial differential equation system

{
z1 = p + q,
z2 = qoffp − qonq

(B1)

that obey an uncoupled system of equations

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂tz1 = D∂xxz1,
∂tz2 = −(qoff + qon)z2 + D∂xxz2,
∂xz1∣x=±L/2 = ∂xz2∣x=±L/2 = 0.

(B2)

To specify the boundary conditions, we write zL
i = zi(x ≤ 0) and

zR
i = zi(x ≥ 0) the left of the wall and right of the wall components

of the eigenvectors. They verify that

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂xzL
1(0, t) = ∂xzR

1 (0, t),
∂xzL

2(0, t) = ∂xzR
2 (0, t),

zL
1(0, t)qon + zL

2(0, t) = zR
1 (0, t)qon + zR

2 (0, t),
∂xzL

1(0, t)qoff = ∂xzL
2(0, t),

(B3)

and z1 and z2 are both discontinuous in 0. The initial conditions
verify that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zL
2(x < 0, 0) = z2(x > 0, 0) = 0,

zL
2(0, 0) = qoffp0/2 − qonp0

qoff
qon
= −qoffp0/2,

zR
2 (x = 0, 0) = −zL

2(0, 0) = qoffp0/2,
zL

1(x < 0, 0) = p0
qon+qoff

qon
,

zL
1(x > 0, 0) = 0,

zL
1(x = 0, 0) = p0/2 + p0

qoff
qon
= p0

qon+2qoff
2qon

,
zR

1 (x = 0, 0) = p0/2 + 0 = zL
1(x = 0, 0) − 2p0

qoff
2qon

.

(B4)

Importantly, this set of equations and boundary conditions is com-
patible with a wrapping

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zR
2 (x) = z̃2(x),

zL
2(−x) = −z̃2(x),

zR
1 (x) = z̃1(x),

zL
1(−x) = 2z0 − z̃1(−x),

(B5)

where z0 = p0
qon+qoff

2qon
, z̃i need only to be defined on a half space, and

the boundary conditions are

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z̃1(x > 0, 0) = 0, z̃1(x = 0, 0) = p0/2,
z̃2(x > 0, 0) = 0, z̃2(x = 0, 0) = qoffp0/2,
(z0 − z̃1(0, t))qon = z̃2(0, t),
∂xz̃1(0, t)qoff = ∂xz̃2(0, t).

(B6)

These boundary conditions are well suited for solving the problem
in Laplace space. We define the Laplace transform

ẑi(x, s) = ∫
∞

0
e−st z̃i(x, t)dt, (B7)

where we use here for compactness the notation ẑ for the Laplace
transform instead of L [z]. The general solution to the system of
equations is

ẑi = Aieqix + Bie−qix, (B8)

where q1 = q =
√ s

D and q2 = q̃ =
√

q2 + qoff+qon
D . In addition,

the integration constants Ai, Bi are determined by the boundary
conditions and obey the following set of equations:

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1eqL/2
− B1e−qL/2

= 0,
A2eq̃L/2

− B2e−q̃L/2
= 0,

(z0
1
s − A1 − B1)qon = A2 + B2,

(A1 − B1)qqoff = (A2 − B2)q̃.

(B9)

We recall that

⟨ΔN2
(t)⟩ = 4N ∫

L/2

0
[ p(x, t) + q(x, t)]dx (B10)

such that

∂t⟨ΔN2
(t)⟩ = 4N ∫

L/2

0
∂t[ p(x, t) + q(x, t)]dx

= 4N ∫
L/2

0
D∂xx[ p(x, t) + q(x, t)]dx

= −4N D∂x[ p(x, t) + q(x, t)]x=0

= −4N D∂x[zR
1 ]x=0

. (B11)

We can thus obtain in Laplace space

⟨ ˆΔN2(t)⟩ = −
4N
q
(A1 − B1). (B12)
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The resulting ⟨ ˆΔN2(t)⟩ is

⟨ ˆΔN2(t)⟩ = 8N z0

√
D

s3/2

qon

qoff
q
q̃ coth(q̃L/2) + qon coth(qL/2)

(B13)

for which no analytic real time expression exists.

1. Analytic result at long times
Fluctuations at long times in Laplace space correspond to small

values of s. We find for the asymptotic behavior

⟨ ˆΔN2(t)⟩ =
s→0

4 N z0

√
D

s3/2
qL = 4 N z0L

1
s

, (B14)

translating to real time and making use of the expression of z0, and
we obtain

⟨ΔN2
(t)⟩ =

t→∞
= 2N, (B15)

which is exactly what is expected.

APPENDIX C: DATA FOR THE SQUARE PORE
For a square pore of side 2R, we use the phenomenological rates

q−1
off =

(2R)2

4D
and q−1

on =
4L2

m − (2R)2

4D
. (C1)

In Fig. 10, we present the fluctuations ⟨ΔN(t)2
⟩ with time using the

rates model with this phenomenological choice and performing BD
simulations through a square pore. The model and numerical data
are in perfect agreement.

FIG. 10. The rates model reproduces the regimes observed in a 3D square pore.
Number difference fluctuations with time for several values of R/Lm as indicated
with the various colors. Dots correspond to data from BD simulations, and lines
correspond to the analytic solutions of Eq. (25). Other numerical parameters
correspond to that of Fig 5(b).

APPENDIX D: SOLVING THE NANOCHANNEL
PROBLEM
1. Rates problem in the nanochannel geometry

We use similar notations and take p(x, t) and q(x, t) as the prob-
ability that a particle is in the passing or blocked state, respectively,
at position x and time t. Those quantities obey the following coupled
set of equations:

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

for ∣x∣ > L0/2, {
∂tp = −qoffp + qonq + D∂xxp,
∂tq = +qoffp − qonq + D∂xxq,

for ∣x∣ ≤ L0/2 , ∂tp = D∂xxp,
∂xq∣x=±L0/2 = 0∂xp∣x=±L/2 = ∂xq∣x=±L/2 = 0,

(D1)

and q is not defined for −L0 < 2x < L0. p and ∂xp, however, are
continuous over the whole domain, especially in x = ±L0/2. To cal-
culate the fluctuations of ΔN, we must proceed as mentioned above
and consider several jumps, starting from either the left-hand side
or the channel itself. Here, we report as an example the initial con-
ditions for the particle starting on the left (taking the initial values
corresponding to the probabilities to find the particle on the left at
equilibrium),

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

p(x < −L0/2, t = 0) = πR2

V
= p0,

q(x < −L0/2, t = 0) = (4L2
m−πR2

)

V
= p0

qoff
qon

,
p(x > −L0/2, t = 0) = q(x > −L0/2, t = 0) = 0.

(D2)

Here, V = 4L2
m(L − L0) + L0πR2 is the total accessible volume. Sim-

ilarly, as in the very long nanochannel problem, we now have to
distinguish between particles that actually went to the other side and
particles that only made it inside the channel. The probability that
the particle made it to the other side at time t is

pL→R(t) = ∫
L/2

L0/2
[ p(x, t) + q(x, t)]dx, (D3)

and the probability that it went inside the channel is

pL→C(t) = ∫
L0/2

0
p(x, t)dx. (D4)

A similar formalism applies for particles starting inside the channel.

2. Solving the rates problem
To solve the rates problem defined by Eq. (D1), we adopt a

similar method as in Appendix B and focus on the eigenvectors
of the partial differential equation system. Beyond the channel, for
|x| > L0/2, we take

{
z1 = p + q,
z2 = qoffp − qonq,

(D5)

and inside the channel, we simply take

zm = p (D6)

that obey an uncoupled system of equations
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⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tz1 = D∂xxz1 for ∣x∣ > L0/2,
∂tzm = D∂xxzm for ∣x∣ ≤ L0/2,
∂tz2 = −(qoff + qon)z2 + D∂xxz2 for ∣x∣ > L0/2,
∂xz1∣x=±L/2 = ∂xz2∣x=±L/2 = 0.

(D7)

To specify the remaining boundary conditions, we split the domain
and write zL

i = zi(x ≤ 0) and zR
i = zi(x ≥ 0) the components of the

eigenvectors to the left and right of x = 0. The boundary conditions
can be derived with minimal algebra,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂xq∣x=±L0/2 = 0⇔ qoffz
L/R
1 ∣x=±L0/2 = zL/R

2 ∣x=±L0/2,

continuity of p⇔
qonzL/R

1 + zL/R
2

qoff + qon

RRRRRRRRRRRx=±L0/2

= zL/R
m ∣x=±L0/2,

continuity of∂xp⇔ ∂x
qonzL/R

1 + zL/R
2

qoff + qon

RRRRRRRRRRR

= ∂xzL/R
m ∣x=±L0/2.

(D8)

a. Starting from the left
We now define the Laplace transforms

ẑL/R
i (x, s) = ∫

∞

0
e−st
(z̃L/R

i (x, t) − z̃L/R
i (x, t = 0))dt. (D9)

Note that here the Laplace transforms are taken with respect to the
base value. The general solutions of the partial differential functions
aforementioned are

ẑL/R
i = AL/R

i eqix + BL/R
i e−qix, (D10)

where q1 = qm = q =
√ s

D and q2 = q̃ =
√

q2 + qoff+qon
D . In addition,

the integration constants Ai, Bi are determined by the boundary con-
ditions Eq. (D8). We recall that the contributions to the noise from
this first situation are

⟨ΔN2
(t)⟩

(1)
= 8N ∫

L/2

L0/2
[ p(x, t) + q(x, t)]dx + 2N ∫

L0/2

−L0/2
p(x, t)dx

(D11)
such that

∂t⟨ΔN2
(t)⟩

(1)
= 8N ∫

L/2

L0/2
∂tzR

1 dx + 2N ∫
L0/2

−L0/2
∂tzmdx

= 8N ∫
L/2

L0/2
D∂xxzR

1 dx + 2N ∫
L0/2

−L0/2
D∂xxzmdx

= −8N D∂x[z1]x=L0/2 + 2N D∂x[zm]x=L0/2

− 2N D∂x[zm]x=0. (D12)

We thus obtain in Laplace space

⟨ ˆΔN2(s)⟩
(1)
= 8

N
q
(BR

1 e−qL0/2 − AR
1 eqL0/2)

+ 2
N
q
(Ame−qL0/2 − BmeqL0/2

− AmeqL0/2 + BmeqL0/2). (D13)

Starting from the left side, zL
1(t = 0) =

1
L

1
1 − L0

L (
1

1+r )
, where

r = qon/qoff, and otherwise initial conditions are 0.

b. Starting from the channel
We can solve in a similar way for particles starting from the

center of the domain. In that case, the problem is symmetric with
respect to the center x = 0 and can be simplified accordingly. Using
similar notations, we obtain

∂t⟨ΔN2
(t)⟩

(2)
= 2 N ∫

L/2

L0/2
∂tzR

1 dx, (D14)

and in Laplace space,

⟨ ˆΔN2(s)⟩
(2)
= 2

N
q
(BR

1 e−qL0/2 − AR
1 eqL0/2). (D15)

Starting from the channel, the base conditions are 0 everywhere

except for zm(t = 0) =
r

1 + r
1
L

1
1 − L0

L (
1

1+r )
.

The total fluctuations sum up to

⟨ ˆΔN2(t)⟩ = ⟨ ˆΔN2(t)⟩
(1)

+ ⟨ ˆΔN2(t)⟩
(2)

. (D16)

c. Correlations of the number of particles within
the channel

The spectrum of the correlation function of the number of
particles within the channel can be simply inferred starting from

⟨Nc(t)Nc(0)⟩ = 2∫
L0/2

0
zm(x, t)dx, (D17)

and going to Laplace space, we simply obtain

L [⟨Nc(t)Nc(0)](s) = −2
D
s
∂xzm∣

x=L0/2
. (D18)

3. Solutions in Laplace space
Here, we report only the results when formally L →∞, corre-

sponding to times t ≪ L2/D. This imposes AR/L
1/2 = 0 and therefore

simplifies greatly the problem leaving only six integration constants
to be found. We write r = qon/qoff and r(s) = q/q̃ such that

⟨ ˆΔN2(s)⟩ = 4 N
√

D
s3/2L

r(1 + r)(1 + eL0q
)/([1 + r − L0/L]

× [r(q) − 1 + eL0q
(r(q) + 1 + 2r)]). (D19)

Similarly,

⟨N̂2
c (s)⟩ = 4 N

√
D

s3/2L
r(1 + r)(−1 + eL0q

)/([1 + r − L0/L]

× [1 − r(q) + eL0q
(r(q) + 1 + 2r)]). (D20)
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These solutions recover, in particular, the expected limits for
infinitely thin pores L0 = 0 and infinitely long channels qoff = 0.
Agreement of these analytic results with BD simulations is reported
in Figs. 11 and 12.

4. Limit regimes
a. Narrow pores

We start by investigating the limit regimes in narrow pores
(r→ 0). We obtain

⟨ ˆΔN2(s)⟩ = 4 N
√

D
s3/2L

r(1 + eL0q
)/([1 − L0/L]

× [r(q) − 1 + eL0q
(r(q) + 1)]) (D21)

that is easily amenable to early/intermediate/late time investigation.
We start by short times, corresponding to s, q→∞. We find that

⟨ ˆΔN2(s)⟩ = 2 N
√

D
s3/2

r
L − L0

(D22)

FIG. 11. The rates model reproduces the regimes for the number difference fluc-
tuations observed in a long 3D square pore. Here, R = 0.2Lm, but similar results
were also found for much small pores. (a) Different regimes with time, as illustrated
in Fig. 7(a), for a specific channel geometry. Initial corresponds to Eq. (D23), early
corresponds to Eq. (D26), intermediate corresponds to Eq. (D32), and later corre-
sponds to Eq. (D33). The later regime is not so much observed as it corresponds
to a time point where fluctuations reach the saturation limit 2N. (b) Number differ-
ence fluctuations with time for several values of L0/R as indicated with the various
colors. Dots correspond to data from BD, and lines correspond to the analytic
solutions Eq. (D19). Numerical parameters correspond to that of Fig. 1.

FIG. 12. The rates model reproduces the regimes for the number of particles within
the pore fluctuations observed in a long 3D square pore. Here, R = 0.2Lm, but
similar results were also found for much small pores. (a) Different regimes with
time, as illustrated in Fig. 7(a), for a specific channel geometry. Initial corresponds
to Eq. (D24), early corresponds to Eq. (D27), and saturation corresponds to the
2N0 limit of Eq. (D29). Analytic solutions for ⟨N2

c (t)⟩ and ⟨ΔN2(t)⟩ overlap at
short times. (b) Number difference fluctuations with time for several values of L0/R
as indicated with the various colors. Dots correspond to data from BD, and lines
correspond to the analytic solutions Eq. (D20). Numerical parameters correspond
to that of Fig. 1.

such that the real time evolutions scale as

⟨ΔN2
(t)⟩ =

t≪L2
0/D

4
N

L − L0

πR2

4L2
m

√
Dt
π

, (D23)

and similarly, for the number of particles inside the channel,

⟨N2
c (t)⟩ =

t≪L2
0/D

4
N

L − L0

πR2

4L2
m

√
Dt
π

. (D24)

At intermediate times, corresponding to L0q → 0 but
q/qoff →∞, we obtain

⟨ ˆΔN2(s)⟩ = 4 N
√

D
s3/2L

r
L − L0

, (D25)

yielding

⟨ΔN2
(t)⟩ =

t≳L2
0/D

8
N

L − L0

πR2

4L2
m

√
Dt
π

, (D26)

and similarly, for the number of particles inside the channel,
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⟨N2
c (t)⟩ =

t≳L2
0/D

8
N

L − L0

πR2

4L2
m

√
Dt
π

. (D27)

Going a bit further in time, we can investigate the infinite time
limit for the number of particles, q→ 0. We obtain, as expected,

⟨N̂2
c (s)⟩ = 2 N

L0

sL
1

1 − L0/L
, (D28)

yielding typically

⟨N2
c (t)⟩ =

t≫L2
0/D

2N0, (D29)

where N0 is the mean number of particles inside the channel.
Coming back to the number difference at these intermediate

times, taking now q/qoff → 0 (but not too small),

⟨ ˆΔN2(s)⟩ = 4 N
√

D
s3/2

r
L − L0

√
qoff/D

q
(D30)

such that we recover the intermediate, diffusive regime as

⟨ΔN2
(t)⟩ =

t≳q−1
off

4
N

L − L0

πR2

4L2
m

√
Dqofft, (D31)

and finally, at very long times (q→ 0),

⟨ ˆΔN2(s)⟩ = 4 N
√

D
s3/2L

1
1 − L0/L

, (D32)

FIG. 13. Comparison of different methods: Fluctuation spectrum for the number of
particles within the pore calculated using Eq. (60) (full line) and with Eq. (12) of
Ref. 33 (dotted line). Here, we took R = 0.2 Lm and L = 500 R. To compare with
Eq. (12) of Ref. 33, we naturally used Db = D in their notations. Note that Eq. (12)
had to be divided by a factor of 2 to show some degree of matching with our result
Eq. (60).

yielding

⟨ΔN2
(t)⟩ =

t≫q−1
off

8
N

L − L0

√
Dt
π

. (D33)

The emergence of all these limit regimes is shown in Figs. 11(b) and
12(b).

5. Comparison of the results with another method
In this paragraph, we compare the results of Eq. (60) with

the results obtained with Eq. (12) of Ref. 33. Figure 13 shows the
two solutions plotted for representative parameters. Disagreement
between the two solutions is visible at low frequencies, at the fre-
quency turning point, and at high frequencies where the decay expo-
nent is not the same. Similar disagreement is found for other pore
parameters.
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