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The transport of fluids at the nanoscale has achieved major 
breakthroughs over recent years1–4; however, artificial chan-
nels still cannot match the efficiency of biological porins in 
terms of fluxes or selectivity. Pore shape agitation—due to 
thermal fluctuations or in response to external stimuli—is 
believed to facilitate transport in biochannels5–9, but its 
impact on transport in artificial pores remains largely unex-
plored. Here we introduce a general theory for transport 
through thermally or actively fluctuating channels, which 
quantifies the impact of pore fluctuations on confined diffu-
sion in terms of the spectral statistics of the channel fluc-
tuations. Our findings demonstrate a complex interplay 
between transport and surface wiggling: agitation enhances 
diffusion via the induced fluid flow, but spatial variations in 
pore geometry can induce a slowing down via entropic trap-
ping, in full agreement with molecular dynamics simulations 
and existing observations from the literature. Our results 
elucidate the impact of pore agitation in a broad range of 
artificial and biological porins, but also, at larger scales, in 
vascular motion in fungi, intestinal contractions and micro-
fluidic surface waves. These results open up the possibility 
that transport across membranes can be actively tuned by 
external stimuli, with potential applications to nanoscale 
pumping, osmosis and dynamical ultrafiltration.

“Everything that living things do can be understood in terms 
of the jigglings and wigglings of atoms”: this quotation by R. P. 
Feynman highlights the importance of fluctuations in living mat-
ter. Transport driven by fluctuations in biological nanopores is no 
exception to this rule, and has been widely investigated5–9. Similar 
observations have been made in (non-living) fluid phases, where 
bulk hydrodynamic fluctuations dramatically affect nanoscale 
dynamics10–12. More recently, numerical simulations have noted 
the impact of phonon modes in carbon nanotubes on the trans-
port of particles confined within them13–15. At much larger scales, 
microfluidic surface waves have been exploited to sort or mix solute 
particles16, and peristalsis in fungal species or in the small intestine 
significantly modifies nutrient and bacterial transport17,18. While 
these observations—which span a considerable range of length 
scales—point to a quantitative impact of surface agitation on the 
transport in confined geometries, a general theory, predicting the 
dependence of transport properties on the surface fluctuations, 
is lacking. Even the simple question ‘do pore surface fluctuations 
enhance or diminish transport?’ is surprisingly difficult to answer. 
While surface fluctuations are naively expected to enhance diffu-
sive transport via induced hydrodynamic flows, which underlies 
the canonical Taylor–Aris mechanism19,20, geometrical bulges may 
entrap particles, resulting in entropic slowing down, as captured 
by the Fick–Jacobs framework21,22, sketched in Fig. 1d. The more 

general situation of transport with temporally varying geometry 
remains open despite its obvious importance.

In this paper, we establish a general relationship between diffu-
sive transport and the dynamical spectrum of surface fluctuations. 
Our framework applies to the case where structural fluctuations of 
the confining pore are induced by thermal noise, but crucially also 
to active, non-equilibrium fluctuations induced by external stimuli. 
We apply our formalism to several situations relevant to nanopore 
transport13,14, as well as to larger-scale configurations, for example 
active contractions in fungal species, which influence nutrient 
transport17,23,24; see Fig. 1a–c.

Our theory starts with the perturbative analysis of the diffusion 
of a particle confined between fluctuating surfaces. For simplicity, 
we consider the two-dimensional geometry presented in Fig. 1e, 
but the results and the formalism can readily be extended to three 
dimensions (Supplementary Information 1). The upper surface is 
located at z =  H +  h(x, t), where H is the mean height and h(x, t) rep-
resents fluctuations about this mean (x represents the coordinate 
along the channel and z the height coordinate). The tracer parti-
cle—for instance, a molecule of dye in the fluid—locally diffuses 
with a bare diffusion constant D0 and is advected by a hydrodynamic 
flow u. The probability density p(x, z, t) of the particle obeys the 
Fokker–Planck (or Smoluchowski) equation: ∂ tp =  − ∇⋅ (up) +  D0 Δ p.  
At this stage, the convective degrees of freedom arising from the 
membrane fluctuations are not averaged out and explicitly enter the 
Fokker–Planck equation. The Fokker–Planck equation is valid as 
long as the timescales associated with the tracer position are larger 
than the microscopic relaxation timescales, and we can verify that 
this timescale separation assumption holds in practice down to 
molecular confinement25. In the case of thin channels, a standard 
expansion (Supplementary Information 1 and 2) yields a reduced 
advection diffusion equation for the marginal probability density 
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longitudinal hydrodynamic flow. Incompressibility of the flow also 
gives ∂ +H h u(( ) )x x  =  −∂ ht . Equation (1) contains two advection 
terms, which both depend explicitly on height fluctuations. The first 
is advection by the height-averaged hydrodynamic flow, expected to 
enhance diffusion. The second term is present even in the absence 
of any fluid in the channel and represents the effect of geometric 
fluctuations of the confining channel. When h does not depend on 
time, the advection term is zero and the second term represents an 
entropic potential, which slows down diffusion21.
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We analyse equation (1) via a perturbation expansion in the 
amplitude of the fluctuations of h (with ⟨ ⟩ =h 0, where ⟨ ⋅ ⟩  is 
the average over the thermal fluctuations). Using a diagrammatic 
expansion, and to first non-trivial order26, we then demonstrate that 
the renormalized late-time diffusion constant is given in terms of 
the spectrum of the pore surface fluctuations S(k, ω), where k and ω 
are Fourier frequencies in space and time, respectively, as
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where S(k, ω) is defined by ω ω⟨ ⟩′ ′∼ ∼
h k h k( , ) ( , )  =  (2π )2δ(k +  k′ ) 

δ(ω +  ω′ )S(k, ω). Equation (2) is the main result of this work. The 
full derivation of this key result is reported in Supplementary 
Information 3. This equation can be generalized to any dimension; 
it can also be expressed in terms of the response function, related to 
the spectrum via fluctuation dissipation, here evaluated at an imagi-
nary frequency (Supplementary Information 4). Note also that a 
similar expression can be obtained for the wave-induced velocity 
drift (Supplementary Information 3).

At this stage, the formalism is completely general and can be used 
to compute the renormalized diffusion resulting from any pore or 
interface motion in terms of the pore or interface fluctuation spec-
trum. It may be interpreted as a generalization of the Fick–Jacobs 
formalism to dynamical confinement. It also applies to the case 
where fluctuations originate from thermal noise, as well as active 
(non-equilibrium) fluctuations driven by external stimuli.

Equation (2) highlights that the renormalization of the dif-
fusion constant can be either positive or negative depend-
ing on the fluctuation spectrum: jiggling can both speed things 
up and slow things down! Indeed, when the height field is fro-
zen, we have S(k, ω) =  (2π)δ(ω)Sf(k), where Sf(k) is the spectral 
density of the spatial variations of the frozen height. Here we  
find De/D0 =  1 −  ⟨ ⟩ ∕h H2 2, in agreement with Fick–Jacobs21,22;  

diffusion is decreased via entropic trapping. When the height 
fluctuations are very rapid in time, but have a large spatial wave-
length, we find De/D0 =  1 +  ⟨ ⟩ ∕h H3 2 2 and diffusion is enhanced 
via advection coupling. We highlight that these limiting regimes 
are very general and can be recovered in the case of more complex 
surface spectra.

In the following we give two example applications of this theory. 
We first focus on thermal fluctuations of a thin layer. Thin-film 
dynamics can be analysed within the lubrification approximation27 
and in the limit of low Reynolds numbers. The fluctuation interface 
spectrum can be obtained from the Hamiltonian H h[ ] of the height 
fluctuations h. The energy functional depends on the Van der Waals 
interactions between the surfaces, possibly the discrete properties of 
the confined liquid28,29 and also contributions associated with con-
straints fixing the average gap size. The dynamics for small height 
fluctuations are given by27
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with λ(H) the permeance of the slit. The term N  is a Gaussian white 
noise with ⟨ ⟩′ ′N Nx t x t( , ) ( , )  =  2(kBT/W)δ(x −  x′ )δ(t −  t′ ), where T 
is the temperature and W the channel width, generated by hydro-
dynamic fluctuations within the liquid27. Focusing more specifically 
on a thin film confined by an elastic membrane, the Hamiltonian 
takes the Landau form

∫ϕ ϕ κ= + + ∂′′H h H WL W x H h H h[ ] ( )
2
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where ϕ(H) is the free energy per unit area of a flat interface (veri-
fying ϕ′ (H) =  0 for the equilibrium height) and κ(H) can be inter-
preted as the surface’s bending rigidity; L is the channel length. 
In this case S(k, ω) =  2kBTλ(H)k2/(ω2 +  k4λ(H)2(ϕ″  +  κk4)2) and, 
directly, one finds using equation (2)
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Fig. 1 | Spectral mixing under interface fluctuations. a, Superposition of a unit cell of the zinc imidazolate framework-8 at 300 K at two time points 
separated by 3 ps (grey versus green). The inset shows a magnified view (courtesy of Romain Gaillac) b, Thermal surface ripples on graphene over water. 
c, Bright-field image of an individual Physarum polycephalum demonstrating active periodic vascular contractions with time, with an amplitude typically 
ranging from the left image to the right (courtesy of Gabriel Amselem). d, Schematic representation of the main elements of the theoretical model.  
An interface fluctuates and/or is actively displaced from a reference height. A particle (in light blue) is advected and diffuses within the medium. Transport 
is modified by advection in the flow induced by the temporal evolution of the interface and the entropic barriers induced by spatial variations of the 
interface. e, Schematic representation of the reduced two-dimensional geometry studied in the main text.
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with ⟨ ⟩h2  =  κℓ ∕k T W2 2B
3 , where ℓ =  (κ/ϕ″ (H))1/4 is the char-

acteristic wavelength of the surface fluctuations. The quantity 
D(H) =  λ(H)ϕ″ (H) is a diffusion coefficient scale associated 
with interface fluctuations. For no slip boundary, one has 
D(H) =  ϕ′′

η
H( )H

12

3
, where η is the viscosity of the liquid. Other fluc-

tuating confinement cases, with different Hamiltonians, geometries 
(e.g. tubes) and boundary conditions (e.g. partial slip), can eas-
ily be analysed, and further examples are given in Supplementary 
Information 6, leading to qualitatively similar conclusions.

Equation (5) shows that if bulk diffusion is large (specifically, 
D0/D(H) ≥  M0 with M0 =  44/3 −  1), then effective diffusion will 
be reduced, i.e. De ≤  D0. Particles with high bare diffusivity see an 
effectively quenched surface profile, which generates an entro-
pic trapping potential, thus slowing down diffusion. On the other 
hand, for slowly diffusing particles, D0/D(H) ≤  M0, the fluctuation-
induced advection enhances diffusion, i.e. De ≥  D0. This results in a 
compensation effect, summarized in Fig. 2a, whereby fast particles 
are slowed down and slow particles are sped up. This difference in 
effective diffusion as a function of bare diffusion has been observed 
in simulations of gas particles in metal–organic frameworks30 and 
water transport in biological porins9. Equation (5) also describes 
typical low-inertia phonon modes on an interface (such as pho-
nons on the surface of graphene or carbon nanotubes31; see also 
Supplementary Information 7). The impact of phonon modes of a 
carbon nanotube on confined water has indeed been measured and 
shown to depend substantially on phonon frequency13.

As a second example, we consider a situation where the fluctua-
tions of the pore’s shape are driven out of equilibrium by an external 
stimulus. This situation is particularly interesting in the sense that 
the pore structure undergoes non-equilibrium fluctuations, there-
fore leading to out-of-equilibrium transport. In general, this situ-
ation can be accounted for by adding a force to equation (3) with 
a specific frequency ω0 and wavenumber k0. We consider here a 
propagating wave of amplitude a0 on the interface of a deforming 
tube with bare radius R as δR(x, t) =  a0 cos(ω0t −  k0x). In this context, 
the relevant driving spectrum is given by S(k, ω) =  π2a0

2[δ(ω0 +  ω)δ 
(k0 −  k) +  δ(ω0 −  ω)δ(k0 +  k)], and using the result of equation (2) for 

a tubular geometry we find (see Supplementary Information 5 and 
8 for the exhaustive derivation)
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where D≈ =  ω ∕ k0 0
2 can be interpreted as a diffusion coefficient 

associated with the surface wavepacket. Interestingly, one recovers, 
from equation (6), the two regimes highlighted previously, but now 
for the actively fluctuating surfaces: diffusion is enhanced or slowed 
down depending on whether the bare diffusion D0 is lower or higher 
than the wavepacket diffusion D≈. The results are summarized in 
Fig. 2b.

Altogether, for the in- and out-of-equilibrium cases respectively, 
one can define a dimensionless Péclet-like number to characterize 
the transition from decreased to enhanced mixing. For equilibrium 
fluctuations Pe =  D(H)/D0 with D(H) the dispersion induced by sur-
face-induced flow, while for active fluctuations Pe =  D≈/D0, intro-
ducing active surface transport via D≈. One may accordingly expect 
that τ~ ℓ ∕Pe D2

0  where ℓ and τ are characteristic length and time 
scales of the fluctuations. An outcome of our theoretical frame-
work is that this Péclet number enables us to quantify the impact 
of surface fluctuations on the transport. Typically, for high (low) 
Péclet number Pe ≥  1 (Pe ≤  1), the transport is expected to increase 
(decrease) under structural jiggling; see Fig. 3.

We show in Fig. 3 a variety of systems where the structural agi-
tation of the confinement is expected to have an impact on par-
ticle transport. These fluctuating systems are classified according 
to their corresponding Péclet number (full details are given in 
Supplementary Information 10). (1) Biological channels, such 
as aquaporins, will undergo thermal fluctuations with typically 
Pe ~ 10−2–102 (Supplementary Table 1), indeed both behaviours 
were observed for water in a KcsA channel9, and diffusion is indeed 
enhanced where fluctuation timescales are fast. In the selectivity 
filter of the KcsA channel, fluctuations are typically 0.5–0.8 Å, so 
the enhancement factor is ∕a R0

2 2 ≃  0.1–0.26,32. (2) In metal–organic 
frameworks the range is similar (Supplementary Table 2): small 
gas molecules such as H2 have Pe ≤  1, and indeed such molecules 
are not accelerated by framework flexibility30; while large gas mol-
ecules have Pe ≥  1, and indeed molecular diffusion is increased, well 
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Fig. 2 | renormalized diffusion under thermally fluctuating and actively driven surfaces. a, Renormalized diffusion De for a thermally fluctuating interface, 
as a function of the average upper interface height H. The vertical axis tick marks represent a change of one unit of ∕D h H0
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boundary conditions and the dashed one is for a large slip length on both sides. ϕ is assumed, for simplicity, to be accounted for by a Hamaker expression, 
ϕ(H) =  PH +  A/12π H2 with A a Hamaker constant and P a constant external pressure that fixes the average film height. Hc =  
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such that below (above) this height diffusion is enhanced (decreased). For a water film typically A =  2 ×  10−20 J43, and Hc =  4 nm. For slipping surfaces 
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A
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 for ≫b H, with a slip length b ~ 10 nm25, ≃H 15c  nm. b, Renormalized diffusion De under an actively fluctuating interface: De is plotted  

as a function of the excitation wavenumber k0. kc is the critical wavenumber defined as kc
2 =  ω ∕ D30 0. For capillary waves on shallow water, one has 

ω γ ρ= ∕k0
2

0
3

0
, where ρ0 is the density of water, such that kc =   γ ρ∕ D3 0

2. Typically, kc ~ 1013 m−1 and we expect that capillary waves always enhance mixing.  
In many other cases the dispersion relation may be more complex, yielding a rich zoology of behaviours.
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beyond perturbation theory, e.g. ∕ ≫D D 1e 0 . In this context, the 
spatial and temporal vibrations yield ⟨ ⟩ ∕h H2 2 ≃  0.333 and thus a 
significant enhancement of De. (3) Graphene sheets show thermal 
ripples that are expected to affect water transport, typically with 
Pe ~ 101–103 (Supplementary Table 3). We have fully confirmed the 
theoretical picture in this situation by carrying out our own molec-
ular dynamics simulations of water confined between graphene 
sheets: the thermally fluctuating sheets do increase particle diffu-
sion by 150% as compared to the flat rigid sheets, while diffusion 
between undulated but frozen graphene sheets is reduced to 80% 
with respect to the flat rigid sheets; see Supplementary Information 
11. Putting in the numbers for the fluctuating graphene case, 
the typical enhancement factor for De in our simulations is actu-
ally found to be larger than the prediction + ⟨ ⟩ ∕h H1 3 2 2 ≃  110%, 
pointing to complementary molecular effects. (4) Finally, we find 
that non-dissipative phonon coupling is in the range Pe ~ 104–105 
(Supplementary Table 4) and always enhances diffusion, in accor-
dance with the observations of ref. 13.

Moving to actively driven dynamics, various examples include 
(1) nanotubes, in which longitudinal mechanical vibrations could 
typically yield Pe ~ 105 (Supplementary Table 5), echoing the numer-
ical results of ref. 34, (2) the small intestine, which demonstrates 
contractile activity with typically Pe ~ 106 (Supplementary Table 6) 
(evidence of an increased dispersion has also been observed, though 
not quantified, in a microfluidic device mimicking the contractions 

of the intestine18; in the small bowel, one finds ∕a R0
2 2 ≃  0.12–0.25 

and thus the enhancement of De is expected to be large35), and  
(3) slime mould vascular networks, in which nutrient dispersion is 
characterized typically by Pe ~ 10−1–102, and increasing for larger 
organisms (Supplementary Table 7). The latter example of nutrient 
dispersal in contracting vascular networks of organisms is actu-
ally of particular interest, since it is essential for survival to gen-
erate alternative strategies for fast nutrient dispersal. For example 
the unicellular organism P. polycephalum, shown in Fig. 1c, is com-
posed of a connected network of veins, containing cytoplasm that 
can deliver nutrients to the entire body: it exhibits non-stationary 
periodic shuttle flows36 driven by a peristaltic wave of contractions17 
spanning the organism. For an individual such as the one in Fig. 3  
with length L =  8 mm, k0 ≃  2π/L ~ 800 m−1 and ω0 ~ 0.06 s−136, we find 
D≈ ~ 10−7 m2 s−1. This is two orders of magnitude larger than the 
bare diffusion of nutrient molecules, with at most D0 ~ 10−9 m2 s−1, as 
indeed observed in simulations in ref. 17. In this organism the hier-
archical structure of veins leads to a0/R ≳  0.9 (a0 being the typical 
difference between large and small veins), such that the enhance-
ment of De is expected to be large.

This figure highlights the fact that a wide variety of situations, 
covering a huge range of scales, can be put in perspective under 
the framework of spectral mixing by confinement jiggling. Going 
further, it is possible to study the relative effect of coupled passive 
and active dynamics, for instance in biological membranes, with an 
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Fig. 3 | enhanced or decreased transport under pore shape wiggling versus the dimensionless Péclet-like number for various fluid transporters. 
Effective diffusion, in thermally or actively fluctuating pores, renormalized by thermal dynamics spectrum described by equation (5) or by active dynamics 
described by equation (6). The diagram compares different fluid transporters, as described in the main text. (Aquaporin for biological channels thanks to 
ref. 44, slime mould courtesy of Karen Alim and vibrating nanotube from ref. 45).
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active component37, or nanoscale systems such as nanotubes that 
are sensitive to thermal as well as activated vibrations38. Taking a 
step further, it would be interesting to extend the theory and inves-
tigate how coloured noise or nanoscale non-Markovian effects 
might influence transport. Moving to macroscopic scales, it would 
be interesting to connect this formalism with cases where the flow 
velocity presents some recirculation, as may occur in the intestine18 
but also in ocean waves, which have been shown to influence mix-
ing and dispersion39.

Our formalism allows us, in particular, to identify the key com-
ponents to design active channels. The results here show that it is 
possible to actively tune the diffusion of species, therefore dynami-
cally differentiating solutes as a function of their own Peclet number, 
and thus providing the conditions for active separation40. Moreover, 
the modification of osmosis processes in fluctuating channels 
remains to be explored, along with their applications to filtration 
and desalination. In a different context, to improve the sensitivity of 
sequencing via translocation through nanopores, a slowing down of 
some species may indeed be required. Our results also demonstrate 
that this fine tuning is possible by harnessing out-of-equilibrium 
dynamics of the pore, with considerable implications for DNA 
sequencing41,42.

Data availability. The data that support the plots within this paper 
and other findings of this study are available from the correspond-
ing author upon reasonable request.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0239-0.
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