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Measuring collective diffusion coefficients by
counting particles in boxes†

Adam Carter, a Eleanor K. R. Mackay, b Brennan Sprinkle,c

Alice L. Thorneyworkb and Sophie Marbach *a

The collective diffusion coefficient Dcoll is a key quantity for describing the macroscopic transport

properties of soft matter systems. However, measuring Dcoll is a fundamental experimental and

numerical challenge, as it either relies on nonequilibrium techniques that are hard to interpret or, at

equilibrium, on Fourier-based approaches which are fraught with difficulties associated with Fourier

transforms. In this work, we investigate the equilibrium diffusive dynamics of a 2D colloidal suspension

experimentally and numerically. We use a ‘‘Countoscope’’ technique, which analyses the statistics of

particle number counts N(t) in virtual observation boxes of a series of microscopy images at equilibrium,

to measure Dcoll for the first time. We validate our results against Fourier-based approaches and

establish best practices for measuring Dcoll using fluctuating counts. We show that Fourier techniques

yield inaccurate long-range collective measurements because of the non-periodic nature of an

experimental image, yet counting exploits this property by using finite observation windows. Finally, we

discuss the potential of our method to advance our understanding of collective properties in

suspensions, particularly the role of hydrodynamic interactions.

Understanding the motion of an ensemble of particles, or
collective motion, is a fundamental puzzle in soft matter.
Outstanding questions in this area range from determining
how molecules traverse a porous matrix1–3 to learning how
interactions between active or living particles trigger sponta-
neous group motion.4–7 Here, a canonical example of collective
motion is collective diffusion.8 Yet for this most fundamental
case we lack a full understanding even for systems with the
simplest interactions, in part due to challenges associated with
resolving collective dynamic properties from experimental
microscopy data.

To understand the questions and challenges pertaining to
the study of collective diffusion, we start by a brief overview of
our understanding of self diffusion in particle suspensions.
Following the seminal works of Stokes and Einstein,9 we
understand the diffusion of a single particle suspended in a
fluid as resulting from fluid molecules in thermal motion
acting on the particle. This diffusion is typically characterised

through the slope of the particle’s mean-squared displacement,

DselfðtÞ ¼
1

2d

d

dt
r tþ t0ð Þ � r t0ð Þj j2

D E
(1)

where r(t) is the particle position at time t in d dimensions and
h�i indicates averaging over all starting times t0. At infinite
particle dilution, Dself(t) provides the bulk or free diffusion
coefficient Dself(t) � D0 = kBT/g, where kBT is the unit of energy
and g a friction coefficient (Fig. 1a). When a particle diffuses in
a suspension of particles, its self diffusion coefficient Dself(t)
may differ from D0 (Fig. 1b). It may be reduced due to interac-
tions with neighbors, e.g. through a caging effect in the
presence of repulsive interactions, or via hydrodynamic
interactions.8 In general, it depends on time. We define its
short-time value, Dself = Dself(t C 0).

When a density gradient forms in a particle suspension, the
so-called collective diffusion coefficient Dcoll characterises the
relaxation of the gradient, which is inherently a many particle
behaviour (Fig. 1c). Note that this coefficient is sometimes
referred to as the transport diffusion coefficient, and we refer
the reader to ref. 10 for an overview. Most often, collective
diffusion is defined via a wavevector-dependent diffusion coef-
ficient D(k, t) which characterizes the relaxation of a density
fluctuation dr = r(k, t) � hri at a wavelength k in a colloidal
suspension as

dr(k, t) = dr(k, t = 0)e�D(k,t)k2t. (2)
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In the large wavevector (short length scale) limit, D(k, t) recovers
the self diffusion coefficient, D(k - N, t) = Dself(t). Conversely,
in the vanishing wavevector (large length scale) limit, D(k, t)
gives the collective diffusion coefficient, D(k - 0, t) = Dcoll(t).
In a few cases, e.g. for small density fluctuations or for pairwise
additive interactions, the collective diffusion coefficient is
independent of time.8,11

In contrast to self-diffusion, determining how individual inter-
particle interactions govern collective diffusion is complex. In
general, collective diffusion is enhanced by interparticle interac-
tions for hard-spheres, as moving particles push their neighbours,
facilitating relaxation. A theoretical argument considering only
pairwise interactions shows Dcoll = Dself/S(k = 0), where S(k = 0) is
the structure factor of the suspension at vanishing wavevector.8,12

At high particle densities in colloidal suspensions, S(k = 0) can be
substantially smaller than 1, and therefore Dcoll may indeed be
significantly larger than D0. This yields Dself r D0 r Dcoll,

8

highlighting how subtle collective diffusion is, even in a simple
case. For hard sphere-like colloids in a suspension, an added
complexity in verifying these theoretical models for how steric
interactions influence collective diffusion is the inescapable
presence of hydrodynamic interactions. In contrast to the case
of self-diffusion, the effect of hydrodynamic interactions on
collective diffusion coefficients is not well established and experi-
mental results widely differ in assessing the role of hydrodynamic
interactions on collective properties.13–23 Methods to reliably
measure Dcoll are thus needed to shed light on collective motion.

Measuring collective diffusion coefficients from particle coor-
dinates, both experimentally and numerically, is challenging.
Since collective diffusion manifests out-of-equilibrium, several
investigations explore the relaxation of a number density
gradient.24–27 However, such experiments are hard to repeat,

because they require setting up the system out-of-equilibrium at
the beginning of each experiment. In addition, as the density
gradient relaxes, neither the gradient nor the local density is
constant, which makes it hard to disentangle how Dcoll depends
on particle number density. Collective diffusion can also be
probed in equilibrium, from density fluctuations that occur
due to thermal motion. The relaxation of the density fluctuations
is then investigated through the dynamic structure factor calcu-
lated in Fourier space.8 Yet, Fourier transforms are computa-
tionally demanding and fraught with spurious features due to
edge effects on microscopy images.28–30 At equilibrium another
strategy consists in probing the diffusion coefficient of the
centre of mass of many particles.1–3,10,31,32 The collective diffu-
sion coefficient is then proportional to the diffusion coefficient
of the centre of mass.12 Yet, obtaining a statistically meaningful
trajectory for the centre of mass requires following a large group
of particles for a substantial amount of time, which is experi-
mentally challenging as particles continuously exit and enter the
field of view. Even in simulations, only one trajectory is obtained,
limiting statistical resolution.

Here, we establish a novel approach to measure collective
diffusion coefficients experimentally and numerically by inves-
tigating the statistics of particle number counts N(t) in virtual
observation boxes at equilibrium (Fig. 1d). The number N(t)
fluctuates due to particles diffusively entering and exiting a box
(Fig. 1e). For small observation boxes, fluctuations are domi-
nated by individual particle motion. Large observation boxes
sense collective motion since fluctuations also reflect the
relaxation of transient groups of particles. In both cases,
relaxation of fluctuations is linked to a characteristic time scale
T(L), which shows a non-trivial dependence on the size of the
square box L. From this time scale, a length scale dependent
diffusion coefficient has been defined, D(L) B L2/T(L), which is
sensitive to Dself for small length scales, D(L - 0) = Dself, and to
collective diffusion at large length scales D(L -N) = Dcoll. This
idea, termed the ‘‘Countoscope’’ (Section I), was proposed
recently by some of us to probe self diffusion, yet its potential
to probe collective diffusion coefficients has not been conclu-
sively explored.23 In this work, we determine best analysis
practices and discuss perspectives to optimize this measure-
ment (Section II). We compare our results with dynamic
structure factor approaches, and find Fourier techniques yield
inaccurate long-range collective measurements because of the
non-periodic nature of an experimental image. In contrast,
counting exploits finite images by paving the space with finite
virtual observation boxes (Section III). Finally, we discuss how
our methodology could provide further insights into the col-
lective properties of suspensions (Section IV).

I. Brief introduction to the
Countoscope with overlapped boxes
A. Experimental system: 2D colloidal suspension near a wall

We investigate the collective diffusive relaxation of a 2D sus-
pension of colloids experimentally and numerically, at

Fig. 1 Inferring collective diffusion properties from counts. Diffusion proper-
ties can refer to (a) the bulk or free diffusion coefficient of a particle D0

suspended in a fluid, (b) the self-diffusion of a particle Dself in a suspension or
(c) the collective diffusion coefficient of the suspension Dcoll, that describes
the relaxation of a particle density gradient. (d) Here, we show how to measure
Dcoll from the relaxation of groups of particles at equilibrium in large virtual
observation boxes on an image (orange). Counts in small boxes (red) probe
individual motion. (e) The number of particles N(t) in a box fluctuates due to
individuals or groups of particles diffusing in and out of the box.
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equilibrium. We briefly restate the system’s properties here and
refer to ref. 23 for details.

In experiments, particles, with effective hard sphere diameter
s = 3.0 mm, which represent well a hard sphere model,33,34 are
gravitationally confined in the z-direction to the base of a glass
cell. Suspensions are imaged in the x–y plane using a custom-
built inverted microscope – see ESI,† Section I A for more details.
Data is recorded at 2 fps and the total field of view is approxi-
mately 290 mm � 360 mm. Particle positions are acquired from
images using standard particle tracking protocols.35,36 For sim-
plicity, we explore here only two different packing fractions,
corresponding to a dilute (f = 0.02) and intermediate density
(f = 0.11) suspension – see Fig. 2. Note that while f = 0.11 lies far
below the crystallisation transition for these systems, this pack-
ing fraction is sufficiently dense that interactions play an appre-
ciable role. To obtain statistically accurate data over the long
collective relaxation timescales we investigate, we acquire experi-
mental data over 20 h. The optical stage and experimental
conditions were carefully adjusted to avoid any significant drift
over this long time scale (see ESI,† Section I A). At these packing
fractions, the short-time self diffusion coefficient of particles can
be calculated through eqn (1) averaged over many particles, and
gives Dself = (0.048 � 0.001) mm2 at f = 0.02 and Dself = (0.043 �
0.001) mm2 at f = 0.11.

In parallel, we conduct Brownian dynamics simulations
representative of the experimental system. Simulation para-
meters are all set to their experimentally measured values,
and steric forces are modelled using the hard potential in
eqn (31) of ref. 37. Hydrodynamic interactions between parti-
cles – both far field and lubrication interactions – are not
accounted for in the simulation for simplicity. This allows for
a direct comparison between the collective diffusion coefficient
obtained from our simulations and that predicted by theory,
which does not include hydrodynamics, to demonstrate the

capabilities of our method. For the experiments, lubrication
(near-field) interactions are not expected to play a significant
role, as the mean distance between particles is large, greater
than 3s at the largest packing fraction f = 0.11. Far-field
hydrodynamics do play a role as seen in the reduction of the
short-time self-diffusion coefficient Dself at f = 0.11. As D(k) and
Dcoll are expected to linearly depend on Dself at first order in the
hydrodynamic interactions, we account for this by presenting
most results renormalized by Dself. Finally, hydrodynamic
lubrication between particles and the bottom glass wall is
accounted for through the value of D0. This is reduced with
respect to the value for a particle in the bulk by a factor
consistent with theoretical predictions.37,38 Further numerical
and simulation methods are described in ESI,† Section I B.

B. Number fluctuations in observation boxes

For both experiments and simulations, we sample fluctuations
in the number of particles N(t) within square boxes of size L � L
over time. N(t) fluctuates between discrete values as a conse-
quence of particles moving in and out of the box via diffusion
(Fig. 1e). We explore the statistical properties of this random
number N(t). We can compute the correlation function depend-
ing on the lag time t as

CN(t) = hN(t + t0)N(t0)i � hNi2 (3)

where h�i indicates an average over all boxes and time origins t0

within the acquisition. For simplicity in the following we write
t0 = 0. Notice that when the lag time vanishes, CN(0) = hN2i �
hNi2 � Var(N). Another relevant quantity is the mean squared
change in particle number,

DN2ðtÞ
� �

¼ NðtÞ �Nð0Þð Þ2
D E

¼ 2 N2
� �

� Nh i2
� �

� 2 NðtÞNð0Þh i � Nh i2
� �

¼ 2VarðNÞ � 2CNðtÞ:

(4)

Both statistical quantities will be useful to investigate as they
characterize the dynamical relaxation of number fluctuations.
In Fig. 3a, we plot the mean squared change in particle
number, hDN2(t)i, for different box sizes in the dilute regime
(f = 0.02). hDN2(t)i first increases in time. Starting from an
initial condition with N(0) particles in a box, as time goes by,
one is more and more likely to see configurations where N(t) is
much higher or much smaller than N(0), resulting in an overall
increase of the squared difference (N(t) � N(0))2 on average.
Eventually, there is significant exchange between particles
inside the box with those outside and we observe a plateau.
The number of particles at long times is therefore uncorrelated
with that in the initial configuration, i.e. CN(t) C 0 for long
times (Fig. 3b). From eqn (4), the plateau corresponds to the
variance hDN(t - N)i = 2Var(N).

In ref. 23, we established that number fluctuations can
resolve the short-time self-diffusion coefficient of particles Dself.
Indeed, at short times, fluctuations are dominated by indivi-
dual particles entering or exiting boxes and satisfy

DN2ðtÞ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dself t=L2

p
. In a system with no interactions, the

Fig. 2 2D experimental hard-sphere system. Optical images of (a, b, dark
blue) the dilute f = 0.02 and (c, d, pink) the intermediate density f = 0.11
suspensions. (a) and (c) shows the entire field of view and (b) and (d) a
cropped subset for visualization.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
8 

A
pr

il 
20

25
. D

ow
nl

oa
de

d 
by

 B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d 
on

 4
/2

8/
20

25
 3

:4
0:

07
 P

M
. 

View Article Online

https://doi.org/10.1039/d4sm01455c


Soft Matter This journal is © The Royal Society of Chemistry 2025

fluctuations relax over a timescale of about L2/Dself. Yet for
denser suspensions, over longer timescales, and especially in
large boxes, the relative motion of groups of particles, or
collective dynamics, should affect number fluctuations.

C. Overlapping boxes

In this work, we aim to characterise the relaxation of number
fluctuations, especially at large length scales – in large boxes –
where collective dynamics are at play. Obtaining statistically
accurate data over large boxes is inherently challenging, but
can be optimized by carefully choosing how to distribute boxes
spatially. With separated boxes (Fig. 3c, green case), as in ref.
23, statistical information is greatly reduced at large scales as
fewer boxes fit on an image, with significant unused regions.
Instead, we propose to overlap sampling boxes (Fig. 3c, blue
case), significantly increasing the number of observation boxes.
Qualitatively, overlapping boxes improve the resolution of the
plateau of hDN2(t)i (Fig. 3a), and significantly reduce noise on
the long tails of the correlation function CN(t) (Fig. 3b). This
means that, although one obtains somewhat correlated data
with overlapped boxes, the increased sampling is more impor-
tant and improves statistical resolution.

To understand what degree of overlapped boxes yields the
best statistics, we evaluate the average standard error on
hDN2(t)i as we increase the number of boxes, and hence the
amount of overlap between boxes (Fig. 3d). The error decreases

by an order of magnitude with increasing box numbers, con-
firming overlapped boxes significantly improve statistical accu-
racy. Eventually the error reaches a noise floor: as we pave space
with boxes, boxes eventually become so overlapped that they
are redundant and no more information is gained. Since this
excessive overlap clearly happens with fewer boxes for larger
boxes, the noise floor is reached with fewer boxes for large
boxes than small ones. Overall, this suggests an upper limit for
the number of boxes to use, which we take here to be 2000
boxes for our system parameters. We use this overlapping
technique and bound in all future analysis.

II. Countoscope to measure collective
diffusion properties

We now use the Countoscope to investigate the relaxation of
number fluctuations, focusing on how this relates to collective
diffusion properties for large boxes. We do this by defining a
box-size dependent coefficient D(L), in analogy with D(k) as
discussed earlier. The two statistical quantities, hDN2(t)i and
CN(t), allow us to explore two complementary methods to
extract collective dynamics. In this section, we find D(L) from
a relaxation timescale T(L), obtained by integrating the correla-
tion function CN(t). We term this method the ‘‘timescale
integral’’. In the ESI† (Section II) we present an alternative
method, using a phenomenological fit of the number fluctua-
tions hDN2(t)i to obtain D(L). This second method is more
suited to situations where the dataset length is limited, but it
requires a phenomenological model of the effect at play, and is
less accurate for sufficiently long datasets. We will compare
results between an effectively non-interacting case, the dilute
suspension at f = 0.02, and the intermediate density suspen-
sion at f = 0.11 where interactions modify behaviour. We will
also explore differences between experimental data, simula-
tions and theory. Importantly, we will show D(L) interpolates
between two regimes, a regime in which self-diffusion dom-
inates in small boxes (red in Fig. 1d) and collective diffusion in
large boxes (orange in Fig. 1d).

A. Workflow of timescale integral method

The timescale integral method is based on quantifying the
relaxation time of the correlation function CN(t) (see Fig. 4a
and b). To quantify the timescale T(L) of this decay, ref. 23
suggested to integrate CN(t) as

TðLÞ ¼ 2

ð1
0

CNðtÞ
CNð0Þ

� �2

dt

¼ 2

ð1
0

1� 1

2

DN2ðtÞ
� �
VarðNÞ

� �2

dt:

(5)

This definition means that for correlations that decay exponen-
tially, T would represent the timescale of the decay as CN(t)/
CN(0) = exp(�t/T). Note, here the unusual squaring factor in the
integrand ensures that the integral converges, as the correla-
tion function decays algebraically at long times,23,29 CN(t -N)

Fig. 3 Importance of overlapping observation boxes. (a) Number fluctua-
tions hDN2(t)i and (b) correlation function CN(t) as a function of the lag time
t for several box sizes for the dilute suspension f = 0.02. Experimental
data. Legend is shared between a and b. (c) Schematic illustrating box
overlapping. (d) Normalised average standard error on hDN2(t)i with
respect to the number of observation boxes for different box sizes. The
error is calculated by dividing the experimental data at f = 0.02 into 10
chunks in time, computing hDN2(t)i for each chunk, and finding the
(averaged over time) standard error between chunks.
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B 1/t (Fig. 3b). Visually, T(L) also roughly corresponds to the
corner in the hDN2(t)i curves.

B. Scale-dependent diffusion coefficient D(L) can probe Dcoll

In the dilute regime, one can verify experimentally that T
corresponds to the time to diffuse across the box, T(L) p

L2/4D0; for dilute or non-interacting systems, rescaling time
by L2 is sufficient to describe the relaxation of fluctuations at all
scales. At higher packing fractions, the time required to relax
fluctuations does not solely depend on how long a single
particle takes to diffuse over the length scale L (ESI,† Fig. S3).
Instead, it depends on the motion of multiple interacting
particles.

We can relate T to a general diffusive phenomenon, by
defining a diffusion coefficient dependent on the box size, as

DðLÞ ¼ aT
L2

4TðLÞ (6)

where aT C 0.56 is a numerical constant, which can be
obtained from a theory we describe below and whose lengthy
expression is reported in eqn (S16) (ESI†). We present D(L)
rescaled by Dself in Fig. 4c and d for the 2 different packing
fractions in this study, for simulations and experiments.

To gain insight on the behaviour of D(L) we first investigate
it with theory. Predictions for CN(t) can be obtained by describ-
ing the particle suspension with a stochastic density field
theory (Dean–Kawasaki equations).23,40,41 In this theory, parti-
cle interactions are pair-wise interactions characterized via
their structure factor S(k). Thus, the theory is general in that
it applies to any particle suspension with pair interactions.
Here, we only include hard sphere interactions, thereby repro-
ducing the ingredients of the simulations, and the expression
of S(k) is given by eqn (S22) (ESI†). The theory is described in
ref. 23 and recapitulated in ESI,† Section III A. In the analytical
curves (lines in Fig. 4c and d), D(L) plateaus for small boxes,
increases, and eventually plateaus again. It can be shown
analytically that for small boxes the timescale integral probes
self diffusion, and for large boxes it probes collective diffusion

DðL! 0Þ ¼ Dself ;

DðL!1Þ ¼ Dcoll ¼
Dself

Sðk ¼ 0Þ:

8><
>: (7)

We check the theory predictions by investigating D(L) with
our simulations and experiments. For both packing fractions,
simulations closely follow the theory over nearly the full range
of box sizes: D(L) plateaus for small boxes, increases, and then
appears to plateau again. Experimental results also follow the
theory up to around L \ s before hitting a divergent region.
This divergence is due to limited statistical accuracy, and we
discuss it further in Section II C. For small boxes L t s, we find
D(L) C Dself as expected, the box-size dependent diffusion
coefficient probes individual motion. Collective motion then
increases the effective diffusion coefficient D(L) at intermediate
lengthscales. In the simulations, D(L) clearly reaches a plateau
around L C 10s, which corresponds closely with the expected
value of the collective diffusion coefficient Dcoll of the suspen-
sion. This plateau is also apparent, though slightly less so in
experimental data, and we discuss how to improve the
measurement in Section II C. Overall, the timescale integral
can indeed capture Dcoll at large lengthscales.

At intermediate lengthscales, L C 2 � 4s, some discrepan-
cies can be noticed between simulations, experiments and
theory, for the largest packing fraction f = 0.11. As they do
not appear for f = 0.02 these discrepancies arise because of
particle interactions. In the theory, particle interactions are
linearized assuming density fluctuations are small. From the
difference between theory and simulations – which contain, as
the theory, only hard sphere interactions – we can conclude
that large density fluctuations arise at these intermediate
lengthscales. Further discrepancies are observed between
experimental data and simulations, which are likely arising
from far-field hydrodynamic interactions.

Finally, experiments, simulations and theory highlight the
presence of a peculiar maximum in the D(L) curves in the
intermediate density case f = 0.11 (pink), near L C 3s. This
effect is quite subtle, and here we propose a qualitative expla-
nation. For small box sizes, L { s, one probes individual
motion at small lengthscales, corresponding to a timescale

Fig. 4 Decorrelation timescale of number fluctuations. (a) and (b) Corre-
lation functions CN(t)2 versus time for (a) simulations and (b) experimental
data in the intermediate density f = 0.11 case. Box sizes go from small
(dark red) to large (yellow). Dotted curves for t r 0.5 s represent short-
time extensions to improve the accuracy of the integral of CN(t)2 on small
boxes L r s. (c) and (d) Diffusion coefficient D(L) p L2/T(L), where T(L) is
obtained from the integral of CN(t)2 from (a) and (b) for (c) simulations and
(d) experimental data. Dashed lines correspond to the theory eqn (6) (using
also eqn (S4), ESI†). Blue corresponds to the dilute regime, and pink the
intermediate density. Error bars are propagated from 99% confidence
intervals in the variance of N(t) across all boxes and times.
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much smaller than the mean time between collisions. For large
box sizes, L c s, one probes collective motion, i.e. the relaxa-
tion of transiently forming groups, at scales much larger than
these transient groups, in essence at a mean-field level. For
intermediate yet small box sizes, say L C s, one still probes
individual motion but at a scale where a particle senses its
neighbours. The interacting neighbours facilitate relaxation of
number fluctuations, by pushing one another. This results in
an increase of effective dynamics D(L). This increased D(L) can
exceed Dcoll, because the box is still small enough, L C s, that
the magnitude of the number fluctuations that relax is still
small on average. Schematically, at these scales one still inves-
tigates only individual particles that get effectively pushed out
by their neighbours, resulting in a maximum of D(L). We will
comment on such behaviour further in ref. 39.

C. Best practices for obtaining the timescale integral

To perform the timescale integral accurately one must obtain
an accurate estimate of the correlation function CN(t). Here, a
significant challenge is to accurately calculate Var(N). To obtain
CN(t), the mean squared change in particle number hDN2(t)i is
subtracted from its plateau, the variance Var(N), as, according
to eqn (4), CN(t) = [hDN2(t)i/2 � Var(N)]. Inaccurate estimates of
Var(N) thus result in divergences in T(L), and on D(L), as
observed for large enough boxes in Fig. 4c and d. The fact that
CN(t) does not vanish smoothly for the boxes L Z 2s in Fig. 4b,
also demonstrates that Var(N) is not accurately resolved.

In general, 2D systems require long times to sample many
different states, such that accurate estimates of Var(N) are hard
to access. A long-time scaling law can be obtained from the
theory showing that CN(t) decorrelates slowly, as 1/t (see
Fig. 3b). This is a consequence of the fact that diffusing
particles can always return to their starting point in 2D.39

Resolving Var(N) in 2D thus requires significantly long datasets,
especially for larger boxes. Due to the slow decay of number
correlations, we expect experiments need to be at least as long
as the decorrelation time to resolve Var(N) correctly. Indeed, for
L = 20s, the decorrelation time is roughly T C L2/D0 C 23 h.
Since this is about the duration of our experiments, this
justifies that divergences appear in Fig. 4d for L \ 20s.
Generally, this defines an upper box size that can be resolved

in an experiment, as Lt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0Texp

p
where Texp is the experiment

time. Simulations without hydrodynamics can be conducted for
long enough times that convergence in time is not an issue. Yet,
we find reliable variance estimates are also hard to access for
large boxes. We identify that better estimates of Var(N) may be
obtained by increasing the size of the periodic simulation box
Lx (see ESI,† Fig. S6). Indeed, collective dynamics loop back
onto themselves via the simulation’s periodic boundaries, and
hence large simulation boxes are needed for accurate resolu-
tion. This defines an upper box size that can be resolved in a
simulation, as L C 0.3Lx. Here we have Lx = 1280 mm and so on
boxes smaller than L t 130s, accurate resolution is possible,
which is apparent in Fig. 4c. Finally, we note that, in this work,
we take the variance as an average over all boxes and all times.

To estimate the variance from such time-correlated data, other
strategies such as bootstrapping could be used,42 or fitting the
distribution of particles in a box. However, we find that our
dominant source of error is not the method to estimate the
variance but rather (i) lack of long time data in experiments, or
(ii) lack of large simulation box in simulations.

The length of the dataset is also important in that, to
integrate CN(t), one must have data over long enough time
periods. During integration, the decay at long times could be
in part improved by replacing the long-time noisy data points
with long-time theory-informed extensions, fitted to the experi-
mental data.23 However, in our experimental system, our domi-
nant limitation is in resolving Var(N) and not lack of long-time
data (ESI,† Fig. S4). For boxes L t 0.3s, the correlation function
decays so quickly that our imaging timestep can not capture the
early time decay, and hence T(L) is incorrectly estimated. To
circumvent this, we match our first experimental data point
CN(Dt) where Dt = 0.5 s, is our experimental time, with a short
time-small box formula in eqn (S1) (ESI†) obtained via the
theory, and integrate the short time extension over [0, Dt] (see
dotted coloured lines in Fig. 4a and b for t r 0.5 s). This short
time extension is added on all box sizes but only makes a
significant difference on box sizes L ts where the decay of the
correlation function is otherwise too fast to be captured by data.

III. Comparison to a common
Fourier-based approach

To assess the performance of the Countoscope, we compare our
results to another approach to calculate Dcoll at equilibrium.
Centre of mass approaches have low statistical resolution,
and thus we rather focus on a Fourier-based approach for
benchmarking.

A. Dynamic structure factors

A common approach to characterize the relaxation of diffusion
processes at several scales is to analyze dynamic structure factors
F(k, t) for a given wavenumber k after a time interval t. The
dynamic structure factor is also referred to as the intermediate
scattering function.8 Formally, it is defined in Fourier space as
the correlation function of the Fourier-transformed densities,
F(k, t) = hr̂(k, t)r̂(k,0)i/Np where Np is the number of particles of
the suspension. Each particle indexed by m has 2D coordinates
given by rm(t) = (xm(t), ym(t)), and one can equivalently rewrite

Fðk; tÞ ¼ 1

Np

XNp

m;n¼1
eik� rmðtÞ�rnð0Þð Þ
D E

(8)

where we assumed the system is rotationally invariant such that
F only depends on k = |k|. At time zero, F is equal to the static
structure factor F(k, t = 0) = S(k). Calculating F(k, t) via eqn (8) is
also called the direct method.43 The dynamic structure factor
F(k, t) characterizes how the structure of the fluid evolves from a
given state. Within linear response, i.e. assuming density fluc-
tuations are small, the structural dynamics are fully described by
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a diffusion coefficient in Fourier space D(k, t) such that

f ðk; tÞ � Fðk; tÞ
SðkÞ ¼ exp �Dðk; tÞk2t

� �
: (9)

Large wavenumbers refer to motion at small scales and
hence correspond to individual motion, so we expect D(k -

N,t) = Dself(t). The limit of small wavenumbers in turn
describes collective motion, by definition, D(k - 0, t) = Dcoll(t).

It is important to note that the dynamic structure factor
bundles two contributions: correlations between a given parti-
cle at a given point in time with itself at a later time Fs(k, t), and
correlations between distinct particles at different times Fd(k, t).
This means F(k, t) can be rewritten as

Fðk; tÞ ¼ Fsðk; tÞ þ Fdðk; tÞ

¼ 1

Np

XNp

m

eik� rmðtÞ�rmð0Þð Þ
D E

. . .

þ 1

Np

XNp

man
eik� rmðtÞ�rnð0Þð Þ
D E

:

(10)

The relaxation of the self part is entirely dictated by the self
diffusion coefficient, as Fs(k, t) = exp(�Dselfk

2t). In principle,
Dself depends on time. Turning now to the full dynamic
structure factor, by inverting the decay of f (k, t), one can obtain
D(k, t) linked to collective dynamics. So far we have kept a
dependence of D(k, t) on time, yet to simplify data analysis, for
now, we will focus on short times, i.e., D(k) = D(k, t C 0), as data
is generally better resolved at short times. In practice, this
involves inverting eqn (9) at the first (non zero) time point. In
simulations and in the theory, we only consider hard sphere
interactions, which are clearly pairwise additive and hence the
collective diffusion coefficient is expected to be independent of
time.11 In experiments, the collective diffusion coefficient also
appears to be independent of time, which may be a result of
density fluctuations being small at the investigated packing
fractions.8 In the ESI,† we distinguish short and long time
regimes, and show similar results overall (ESI,† Fig. S6).

B. Divergence artefact of the dynamic structure factor for k - 0

The dynamic structure factor F(k, t) is computed via eqn (8) at
various wavelengths k for the dilute suspension, f = 0.02, and
shown in Fig. 5a. From this we obtain D(k) for all relevant
wavelengths as presented in Fig. 5b (diamonds). Surprisingly,
for this dilute suspension we notice a clear divergence at small
wavelengths of D(k). Note that this divergence is not visible in
the self diffusion coefficient Dself extracted in a similar way
from Fs(k, t) (Fig. 5b, crosses). We do not expect such changes in
the collective diffusion coefficient D(k - 0) for such a dilute
suspension.

To unravel the origin of this peculiar artefact, we conduct
the analysis again on modified versions of the experimental
data. First, we trim the duration of our experimental data, and
plot D(k) for different trimmed lengths, and find no significant
difference (see ESI,† Fig. S7). The artefact is thus not due to a

lack of statistics. Second, we crop experimental movies, effec-
tively reducing the effective field of view (Lx, Ly). The divergence
in D(k) is significantly affected by cropping: occurring at larger
wavenumbers for smaller images, see Fig. 5c. Typically, the
divergence starts for k values such that k t 2p/(Lx/10). This
hints that the artefact originates from edge effects. Finally, we
also compute D(k) from simulation data, see Fig. 5d (light
green), and do not find the divergence.

The fundamental difference between experiments and simu-
lations is that the simulated data has periodic boundary con-
ditions. To mimic the experimental situation, we run a
simulation on a much larger simulation box and do the D(k)
analysis on a cropped subset of the data, see Fig. 5d (dark
green). Under these simulated non-periodic boundary condi-
tions, we recover a similar divergence in D(k) as found experi-
mentally. This demonstrates that the absence of periodic
boundary conditions is at the origin of the artefact. The
resolution of the dynamic structure factor is thus intrinsically
limited by the finite field of view of the experiment.

While a detailed investigation of why this artefact appears is
beyond the scope of this work, edge effects are its roots. Edge
effects are common on Fourier transforms of images, where
numerous techniques have been developed to limit related
artefacts.28,30 Such techniques are not directly applicable to
discrete particle positions, and hence to the computation of
F(k, t) via eqn (8), yet motivate perspectives for improvement. To

Fig. 5 Challenges in resolving Fourier space relaxation from experiments
at f = 0.02. (a) Examples of dynamic structure factors f (k, t) at different
wavenumbers k. (b) Obtained D(k) from first-point inversion of f (k, t) and
Fs(k, t). (c) D(k) from f (k, t), but for cropped microscopy images. Lx as given
in legend, Ly was picked to preserve aspect ratio of the field of view. (d) D(k)
from f (k, t) from simulations with periodic and non-periodic boundary
conditions. The numerical field of views are taken to be the same size. This
subplot is repeated for the intermediate density case in ESI,† Fig. S10. Error
bars are propagated from the standard error in the value of f (k, t) across all
time origins.
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conclude, we simply raise caution and stress that for experi-
mental data with observation windows of size Lx, k should be
restricted such that 2p/k t 0.1Lx when probing dynamic
behaviour.

C. Results for D(k) in a intermediate density suspension

We now investigate the wave-number dependent D(k) for the
intermediate density suspension f = 0.11. To relate to our
previous results obtained via the Countoscope, we present data
as D(k = 2p/L), effectively flipping the x axis horizontally. Fig. 6a
shows the results from simulation compared to the theoretical
prediction D(k) = Dself/S(k) (dotted lines in Fig. 6). Simulations
without hydrodynamics perfectly reproduce the theory, and
plateau to the collective diffusion coefficient Dcoll as expected.
Crucially this confirms the validity of our analysis scheme.
Distinct features appear in D(k) at the higher packing fraction at
lower wavenumbers. In particular, we notice a minimum in D(k)
around L C s (C2p/k). The scale-dependent diffusion coeffi-
cient D(k) is quite sensitive to the fluid’s structure at different
wavelengths, as expected from D(k) B 1/S(k). The maximum in
S(k) (see Fig. S2, ESI†), corresponding to ordering at increased
packing fractions, thus corresponds with a minimum in D(k),
the so-called De Gennes narrowing.44 This interpretation can
be checked by overlapping the theoretical prediction D(k) =
Dself/S(k) on simulation and experiments (dotted lines in Fig. 6).

In contrast, sharp discrepancies arise between experimental
data and theory (Fig. 6b). A divergence occurs at a similar
lengthscale L \ 3s for experimental data at both f = 0.11 and
f = 0.02, suggesting it is in both cases a consequence of the
artefact discussed above. As such, beyond this lengthscale,
interpretation of the data is ambiguous. Nonetheless, at smal-
ler lengthscales, the distinct features linked to De Gennes
narrowing for the higher packing fraction are accurately
resolved in D(k) for the experiment. Divergence of D(k) in
previous works has been attributed to hydrodynamic
corrections.19–21 Unfortunately, this reported behaviour arises

for wavelengths where the divergence artefact in D(k) kicks in for
our results, and before the theory even reaches the Dcoll plateau.
To deconvolve hydrodynamic contributions from this artefact is
beyond the scope of our work. Yet, several strategies are worth
mentioning. On the experimental side, one could use wider
fields of view to increase the range of relevant L lengths or
design de-aliasing techniques.28,30 Simulations including hydro-
dynamic interactions between particles could be conducted23,37

and compared with simulations with purely steric interactions as
well, but require intense computational resources.

D. Countoscope versus Fourier-based approaches

The features observed in D(k) via the investigation of the
dynamic structure factor are reminiscent of features of D(L)
inferred from the Countoscope. We compare the two approaches
by overlapping D(k) and D(L) for simulations and experiments in
the intermediate density regime f = 0.11 (Fig. 7). Overall, the
fluid’s structure is quite apparent on D(k), and less so on D(L).
Curiously the maximum in D(L) occurs at a similar lengthscale to
the minimum in D(k), a behaviour which would require further
investigation at different packing fractions to be confirmed. The
increase in the scale-dependent diffusion coefficient occurs at
different scales: counting is sensitive to collective effects typically
for L \ s while one must wait for 2p/k \ 5s for collective effects
in D(k), demonstrating the sensitivity of counting.

Based on simulation data, we find counting can estimate the
collective diffusion coefficient Dcoll on large boxes. Indeed, in
Fig. 7a, we observe D(k - 0) = D(L - N) = Dcoll. The measure-
ment of the collective diffusion coefficient Dcoll via the Counto-
scope or the dynamic structure factor approach are thus
equivalent. As a periodic methodology, the Fourier-based
approach on simulation data does not appear to diverge at large
length-scales, compared to the Countoscope. Although the diver-
gence is not apparent at the length scales presented in Fig. 7a, it
is apparent at larger length scales (ESI,† Fig. S7). Nonetheless,
one should keep in mind that finite-simulation size effects can
still affect the plateau reached by D(k) significantly (ESI,† Fig.
S7). As a Fourier methodology, dynamic structure factors access
larger lengthscales than counting on periodic simulation data.

In experiments, it is hard at this stage to compare the
limiting behaviour of D(L) and D(k) for L - N or k - 0 due
to the artefact divergence in D(k). However, in experiments,
counting provides information on D(L) at much larger lengths-
cales than D(k). Improving variance estimates would eventually
increase the timescale integral’s accuracy and decrease errors
from the counting technique at the largest lengthscales. For
D(k), however, the system will always stay non-periodic and the
divergence may be harder to fix. As a real-space methodology,
counting is more robust on non-periodic experimental data
than Fourier-based approaches.

IV. Discussion and conclusion

In this work, we have shown how to infer collective diffusion
properties at various spatial lengthscales by counting particles

Fig. 6 Relaxation of dynamic structure factors. D(L = 2p/k) for f = 0.02
(blue) and f = 0.11 (pink) obtained from short time analysis of the dynamic
structure factor in (a) simulations and (b) experiments. Theory lines
correspond with D(k) = Dself/S(k) with S(k) given in eqn (S22) (ESI†). The
divergence for L \ 3s in (b) corresponds to non-periodic boundaries as
discussed in Fig. 5 and in the text. Error bars are propagated from the
standard error in the value of f (k, t) across all time origins.
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in boxes. The box-size dependent diffusion coefficient D(L) can
be obtained via time integration of the correlation function of
particle numbers in a box hN(t)N(0)i. D(L) converges to the self
diffusion coefficient in small boxes D(L - 0) = Dself. In large
boxes, it probes the collective diffusion coefficient D(L - N) =
Dcoll, as confirmed via a comparison between theory and
simulations and investigation of the dynamic structure factor.
For experiments, accurately determining D(L) for large length
scales is hindered by difficulties in determining the variance of
the number fluctuations. However, we have found Fourier
approaches, such as the dynamic structure factor, also struggle
at large length scales due to the finite field of view of micro-
scopy images, which leads to unphysical divergences of D(k) at
large wavelengths. In contrast, counting exploits finite fields of
view by deliberately paving the image with finite observation
boxes and could be made more accurate with an improved
estimate of Var(N). Finally, D(L) informs on collective dynamics
at all spatial scales L, allowing us to broadly investigate collec-
tive properties of suspensions.

While our investigation was centred on a 2D colloidal
suspension, it introduces a general tool to infer the collective
properties of suspensions from microscopy images. Indeed, the
formalism applies to any quasi-2D experimental scenarios
where particle coordinates can be obtained. Beyond that, we
anticipate the Countoscope to be applicable in 3D. Given 3D
particle coordinates, one can readily calculate number fluctua-
tions in a 3D box, and then perform correlations, and the
timescale integral. Interpretation of the results would be facili-
tated with further theory, which is a priori feasible with the
current theoretical model.45 However, 3D experimental setups
often involve further complexities which remain to be
accounted for in this context, and we leave this for further
investigation.

We anticipate that our method could shed light on the effect
of hydrodynamic interactions in colloidal suspensions, in
particular for quasi 2D suspensions near walls, which occur
quite commonly in soft matter systems. Previous theoretical

and experimental investigations of quasi 2D geometries have
suggested that long-range correlations between particles can
enhance collective motion dramatically, resulting in a diver-
gence of D(k) at large wavelengths.18–22,46–48 This is at odds with
bulk 3D systems, where hydrodynamic interactions reduce the
value of Dcoll.

16–18 Interestingly, we find in our experimental
data that a divergence on D(k) can be linked to edge effects, and
thus potential effects of hydrodynamic interactions are hidden.
In contrast, on experimental data for D(L), we find no evidence
for a divergence, however the error bars in our data at large
length scales are very large. Beyond the artefact divergence,
which could also be at play in previous works, discrepancies
could originate from diverse physical factors. At higher packing
fractions, up to f C 0.6, we expect hydrodynamic effects could
be more important.23 The geometry of our system consists of
particles at a single wall as opposed to a fluid–fluid interface or
between two closely-spaced walls,18–22,46 and geometry is
known to significantly influence the range over which hydro-
dynamic interactions decay.49,50 The decay of hydrodynamic
interactions could also be a transient short-time effect, requir-
ing further interpretation of Dcoll as a time-dependent
property.13 In more complex cases such as these, it remains
an open question to identify whether fluctuating counts are
sensitive to short or long time collective properties.

More generally, we stress that to obtain accurate quantifica-
tion of collective properties, significant data sets are required,
both in time and spatially: our experimental data sets are 100
times larger than the particle size, and more than 1000 times
longer than the time to diffuse across a particle’s diameter and
only nearly capture Dcoll. Given that wide fields of view are
necessary to resolve motion at large spatial scales, for dense
systems in particular trajectory reconstruction may no longer
be feasible.35,51,52 For the investigation of collective effects, this
is not an issue as both counting or dynamic structure factors
F(k, t) do not require trajectories (Table 1). In that sense,
counting fills a gap in the field, as the real-space equivalent
of F(k, t). Density fluctuations are also investigated in real space
through intensity fluctuations of scattered light, via fluores-
cence correlation spectroscopy (FCS)53 or dynamic light scatter-
ing (DLS).54 In contrast with these techniques, we explicitly
count numbers, avoiding the link between scattered intensities
and particle numbers which is especially ambiguous at high
densities.55,56 More importantly, the Countoscope is not
restricted to a given lengthscale, unlike e.g. FCS which analyzes
the scattered light of a given illuminated region. This suggests
exploring intensity correlations in real space on virtual boxes of
an image, a form of ‘‘intensity Countoscope’’. Again, this would
fill a gap in the field, as the real space equivalent of differential
dynamic microscopy.57

Finally, we hypothesize that probing number correlations at
different scales could inform us about more diverse collective
transport properties, beyond diffusion. For instance, in active
matter systems, either synthetic or biological, peculiar features
are common in static number fluctuations: ‘‘Giant’’ number
fluctuations, where a 4 0 in the scaling hN2i � hNi2 B N1+a,
indicate long-range organization, as found in bacterial

Fig. 7 Comparison of Countoscope versus Fourier-space approaches: via
D(L) computed via the timescale integral (dots) and D(k = 2p/L) computed
via the early-time fit of the dynamic structure factor (diamonds), for (a)
simulations and (b) experiments for the highest packing fraction f = 0.11.
Theory lines correspond with eqn (6) for the Countoscope and D(k) = Dself/
S(k) with S(k) given in eqn (S22) (ESI†) for the Fourier approach.
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aggregates and active matter.58–66 Likely, investigating the
dynamic counterpart of these static fluctuations, through the
decorrelation time T(L) of number fluctuations at different
scales could help us characterize collective motile states, and
perhaps shed light on how they emerge from specific inter-
particle interactions.6,7
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