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ABSTRACT
To overcome the traditional paradigm of filtration, where separation is essentially performed upon steric sieving principles, we explore the
concept of dynamic osmosis through active membranes. A partially permeable membrane presents a time-tuneable feature that changes the
effective pore interaction with the solute and thus actively changes permeability with time. In general, we find that slow flickering frequencies
effectively decrease the osmotic pressure and large flickering frequencies do not change it. In the presence of an asymmetric membrane,
we find a resonant frequency where pumping of the solute is performed and can be analyzed in terms of ratchet transport. We discuss and
highlight the properties of this resonant osmotic transport. Furthermore, we show that dynamic osmosis allows us to pump the solute at the
nanoscale using less energy than reverse osmosis. This opens new possibilities to build advanced filtration devices and design artificial ionic
machinery.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5138987., s

I. INTRODUCTION

Modern processes for filtration are based on passive sieving
principles: a membrane with specific pore properties allows us
to separate the permeating components from the retentate.1 The
domain has been boosted over the last two decades by the pos-
sibilities offered by nanoscale materials, such as graphene based
or advanced membranes.2–8 Selectivity requires small and prop-
erly decorated pores at the scale of the targeted molecules, and
this inevitably impedes the flux and transport, making separation
processes costly in terms of energy. Furthermore, standard mem-
branes suffer from an intrinsic limitation: to increase permeability,
one must typically increase the size of the pores at the expense of
inevitably diminishing selectivity. This is commonly referred to as
the selectivity–permeability trade-off.9

However, this classical paradigm only considers membranes
with fixed properties and pore size, and therefore, the constraints
of selectivity–permeability are defined with static systems. Interest-
ingly, nature encompasses a number of highly selective and highly
permeable porins that operate far from equilibrium and involve
active parts.1,10–12 Pore shape agitation was identified in some cases

to be tightly connected to selectivity properties.13 Therefore, it is
natural to revisit the trade-off paradigm by investigating how it
is possible to harness non-equilibrium dynamics and active mem-
branes to separate solutes across active nanopores14,15 (see, e.g.,
Fig. 1). There is accordingly an interesting analogy with active
matter,16–18 and the osmotic pressure generated by active fluids
in the vicinity of passive semi-permeable membranes has also
been explored.19,20 However, how membrane dynamics may affect
osmotic pressure remains to be investigated. In this context, we
explore the concept of dynamic osmosis and the possibility of tuning
the osmotic pressure via the membrane dynamics. This corresponds
to a non-equilibrium situation, which could allow us to some extent
to bypass the equilibrium constraints of separation.

Considering a nanopore with some dynamic feature (e.g., a
flickering aperture and a time-dependent surface charge), we raise
the following questions: how is the osmotic pressure expressed? How
does the osmotic pressure depend on the typical time scale of the
dynamic feature? To address these questions, we will consider a sim-
ple, yet insightful kinetic model of membrane separation in which
the membrane pores are assimilated to a potential energy barrier
U(x) across the membrane [see Fig. 1(a)].5,21,22 This energy profile
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FIG. 1. Membranes as potential barriers. (a) Porous membrane seen as an energy
barrier U(x). (b) The porous membrane has some temporal dependence (for
instance, time-dependent porous aperture) and can be seen as a time dependent
energy barrier U(x, t).

is allowed to vary with a typical time scale, modeling the dynamic
feature of the membrane [see Fig. 1(b)]. We show that the osmotic
pressure response is a highly non-trivial function of the frequency
of the pore oscillations. In specific regimes where the energy barrier
is asymmetric, the osmotic pressure exhibits a resonance at a char-
acteristic frequency. Interestingly, we will harness the know-how of
transport and pumping through oscillating ratchet potentials23 to
predict the properties of dynamical osmosis. This allows us, in par-
ticular, to identify the design rules for a minimal osmotic pump. The
properties of such active membranes are, therefore, extremely broad
and could be harvested for advanced nanofiltration. Finally, we show
that dynamic osmotic solute pumping is energetically less costly than
standard reverse osmosis.

II. ACTIVE NANOPORE
A. Active membrane model and qualitative
considerations

We consider a porous membrane separating two sub-volumes,
containing a solvent and a solute. There is a solute concentration
difference between the two sub-volumes, ΔC = C2 − C1. Follow-
ing Ref. 21, we consider a model in which the pores are replaced
by a potential barrier (see Fig. 1). Specifically, we model the mem-
brane as an external potential U(x, t) acting only on the solute and
not on the solvent molecules. Thus, the membrane still remains per-
meable to the solvent with a permeance Lhyd, relating the flux Q
to the pressure drop Δp in the absence of a concentration differ-
ence: Q = −LhydΔp. The potential U(x, t) varies only along the x
axis across the membrane. We denote L as the characteristic thick-
ness of the membrane so that U vanishes outside the lateral range
L (see Fig. 1). The potential U represents any kind of interaction
between the solute and the membrane. These could be steric inter-
actions for colloids or large molecules or electrostatic interactions
between charged solutes and a charged membrane, etc. Although
here we consider that the primary interaction is between the solute
and the membrane, our model could be extended further to account
for specific interactions between the solute and the solvent. To give
rise to osmosis—which is our interest here—the necessary condi-
tion is that the solute and solvent do not interact in the same way
with the membrane,1 and therefore, to simplify, we only consider
one interaction.

If the potential U(x, t) is static in time, the above kinetic frame-
work allows us to recover, for instance, the van ’t Hoff law for

osmosis.21,22 Here, we are interested in the dynamical case, where
a time-dependent pore permeability is modeled by an oscillating
potential,

U(x, t) = U0 ϕ(x)(1 + ϵ cosωt). (1)

The resulting configuration is schematically depicted in Fig. 2. As
the energy profile goes down with time, the concentration pro-
file is accordingly modified, as diffusion brings the solute into the
membrane. When the energy profile goes up again, solutes diffuse
outwards, and the concentration profile flows away accordingly. A
typical system representing such an active membrane could consist
in electrically gated pores24,25 or in mechanically driven pores with
some external excitation.15 Note as well that nearly every biologi-
cal nanochannel works in such nonequilibrium conditions with, e.g.,
electrical or mechanical gating.26

At this stage, one can note that the ingredients entering our
system are very similar to those composing an oscillating potential
ratchet.23,27–32 Therefore, we may expect the flux of solute particles
to be strongly dependent on the frequency of forcing, as well as the
height U0 of the energy barrier. Here, we are especially interested in
the consequences on the osmotic pressure, for which there is little
intuition and no analytic result.

In Subsections II B–II E, we give details on how to compute
the concentration profile, the effective flux, and the osmotic pressure
in this oscillating case. In the following steps, we will perform an
expansion in ϵ for any potential shape in order to obtain general
results for the osmotic pressure as a function of the frequency. Then,
in Secs. III–V, we will apply these results to specific shapes of the
potential and obtain explicit results.

B. Expansion of the Smoluchowski equation
In the 1D geometry described above, the solute concentration

c(x, t) obeys the time-dependent Smoluchowski equation,

∂tc = −∂x(−D∂xc + λc (−∂xU) + vc), (2)

where D is the diffusion coefficient and λ = D/kBT is the mobil-
ity, with kB and T being the Boltzmann constant and the temper-
ature, respectively. We further assume a low Péclet number limit, Pe
= vL/D ≪ 1, such that the convective term of Eq. (2) is negligible.
This is valid for low permeability (nanoporous) membranes—note

FIG. 2. Expected behavior with oscillating symmetric energy barrier. (a) The energy
barrier is initially fully expressed with the same solute on each side, but in different
concentrations; (b) when the barrier is decreased, the solute can diffuse, eventually
mixing up between both sides; and (c) when the barrier goes up again, the solute
is pushed back outwards, and the solute effectively originating from the right hand
side ends up on the left hand side, inducing an effective flux of the solute. The
effective flux is expected to depend on the spatial and temporal characteristics of
the potential.
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that convective terms are also of higher order in the concentra-
tion profile as the velocity field v typically scales as c (−∂xU) Stokes
equation for the flow [Eq. (17)].

The boundary conditions for the concentration are

c(x1, t) =C1,
c(x2, t) =C2,

(3)

with x1 = −L × δ0 and x2 = +L × (1 − δ0) and δ0 being a dimension-
less parameter (see, e.g., Fig. 4). In the following, we will also use
δ1 = 1 − δ0.

Using now the expression of U(x, t) in Eq. (1), the Smolu-
chowski equation becomes

∂tc = −D∂x(−∂xc + c
U0

kBT
(1 + ϵ cosωt) (−∂xϕ)). (4)

We expand the solution as

c(x, t) = c(x) + ϵ δc1(x, t) + ϵ2δc2(x, t),

with

δc1(x, t) = Re[δc1(x)e jωt
]

and

δc2(x, t) = Re[δc0
2(x) + δc1

2(x)e
2jωt
], (5)

where Re stands for the real part. This expansion is thought as an
expansion in ϵ. The term c × cosωt in Eq. (4) leads at the second
order to the expected modes in 0 and 2ω, yielding the two second
order terms in Eq. (5). In average over time, we expect the first order
terms to vanish. To compute relevant quantities such as the osmotic
pressure and the average flux through the membrane, we, thus, need
to perform the expansion up to second order.

C. Concentration profile equations
In this section, we present an analytic derivation for the con-

centration profile and solute flux up to second order. For readability,
we nondimensionalize the equations using x̃ = x/L, t̃ = t/τ0, and c̃
= c/C0 [where C0 = (C1 + C2)/2 and ω̃ = ω/ω0, with ω−1

0 = τ0 = L2
/D

and u0 =
U0

kBT ]. We then drop the tilde signs to simplify. We also write
Δc = (C2 − C1)/C0, and fluxes are nondimensionalized by D C0/L.

1. Zeroth order equation
The zeroth order solution c(x) is assumed to be stationary and

thus obeys

0 = −∂x(−∂xc + c u0 (−∂xϕ)), (6)

whose solution is (see Ref. 22 for details)

c(x) = e−u0ϕ(x) − (Δc) e−u0ϕ(x) ∫
δ1

x dx′ exp[+u0ϕ(x′)]

∫
δ1
−δ0

dx′ exp[+u0ϕ(x′)]
. (7)

The corresponding flux to the zeroth order is

J0 = −(1 − σ0) × Δc, (8)

with the rejection coefficient σ0 defined as

σ0 = 1 −
1

∫
δ1
−δ0

dx′ exp[+u0ϕ(x′)]
. (9)

2. First order equation
The equation for the time-dependent concentration δc(x, t) at

order 1 is

∂tδc1(x, t) = ∂xxδc1(x, t) − u0 ∂x[δc1(x)(−∂xϕ)]
− u0 cos(ωt)∂x[c(x)(−∂xϕ)]. (10)

Accordingly, the first order complex amplitude, δc1(x, t)
= Re[δc1(x)ejωt

] [see Eq. (5)], obeys

jωδc1(x) = ∂xxδc1(x) − u0 ∂x[δc1(x)(−∂xϕ)]
− u0 ∂x[c(x)(−∂xϕ)]. (11)

The boundary conditions are assumed to be δc(x = −δ0) = δc(x = δ1)
= 0. The last term of Eq. (11) is a driving term.

This equation can be solved for some specific forms of ϕ(x), and
we come back to analytic solutions in Secs. II D and II E. In the end,
we will find δc1(x, t) = δc1(x) cos(ωt + φ), where the phase φ depends
on all parameters.

3. Second order equation
As pointed out above, the second order is a sum of zero fre-

quency and 2ω terms: δc2(x, t) = Re[δc0
2(x) + δc1

2(x)e
2jωt
]. We

focus on the zero frequency term, δc0
2(x), which is relevant for the

flux and osmotic pressure, while the 2ω term will not contribute and
averages to zero.

The second order static term obeys the equation

0 = ∂xxδc0
2(x) − u0 ∂x[δc0

2(x)(−∂xϕ)] (12)

−
u0

2
∂x[∣δc1(x)∣(−∂xϕ)] cos(φ), (13)

where the last term originates from the time average of the first order
term over one period. One can also just solve Eq. (13) in the complex
domain, and we do that in the following. We assume the following
boundary conditions: δc0

2(x = −δ0) = δc0
2(x = δ1) = 0.

Equation (13) can be easily solved. Defining the second order
flux as

J2 = −∂xδc0
2(x) + u0(−∂xϕ)δc0

2(x) +
u0

2
∂x[δc1(x)(−∂xϕ)], (14)

one has J2 = const. This yields

J2 =
1
2
∫
δ1
−δ0

dx δc1(x)(−∂x exp[u0ϕ])

∫
δ1
−δ0

dx exp[u0ϕ]
(15)

and

δc0
2(x) = − J2e−u0ϕ(x)

∫

x

−δ0

dx′ eu0ϕ(x′)

+
e−u0ϕ(x)

2 ∫

x

−δ0

dx′ δc1(x) (−∂x exp[u0ϕ(x′)]). (16)

D. Dynamic osmotic pressure and flux
1. Osmotic pressure

We now turn to the expression of the osmotic pressure. We
write accordingly the force balance on the fluid (composed of the
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solvent and the solute). It is crucial to remark that the membrane
will act on the fluid as an external force, −∂xU, exerted on the solute
molecules. This is due to solute and solvent being in a dense interact-
ing phase, where the force acts on the whole fluid volume, as solvent
molecules are dragged along the solute. This is expressed writing the
force balance on the fluid, represented by the Stokes equation along
the x direction (here, fully dimensionalized),

ρ∂tv = −∂xp + c(x)(−∂xU) + η∇2v, (17)

where p is the fluid pressure, v is the flow velocity of the fluid in
the x direction, η is the fluid viscosity, and ρ is its density. The driv-
ing force inducing solvent flow is accordingly written in terms of
an apparent pressure drop, −∂xP = −∂xp + c(x)(−∂xU). The mem-
brane, via its potential U, will, therefore, create a pressure force on
the fluid, which writes per unit surface

σΔΠ = ∫
δ1L

−δ0L
dx c (−∂xU). (18)

ΔΠ is identified as the osmotic pressure, which in the dilute case
takes the simple van ’t Hoff expression ΔΠ = kBTΔC; σ is a screening
parameter that takes into account the specificities of the membrane.
Assuming that the time scale to establish the flow is much faster than
the time scale of oscillation of the potential barrier, the fluid flux will,
therefore, write Q = −Lhyd(Δp − σΔΠ). At high forcing frequencies,
this assumption should be reconsidered to account for inertial effects
and may lead to enhanced or decreased behaviors.

Here, we are interested in the averaged effective force over
a period ⟨σΔΠ⟩. Following the previous formal expansion c(x, t)
= c(x) + ϵδc1(x, t) + ϵ2δc2(x, t), we expand the osmotic pressure
contribution as

ΔΠapp ≡ σappΔΠ ≡ ⟨σΔΠ⟩ = Π0 + Π1 + Π2, (19)

corresponding to contributions of the zeroth, first, and second order
terms in the concentration; σapp is an apparent screening parameter.
Note that both terms ΔΠ1 and ΔΠ2 are of order 2 in ϵ. We come back
to nondimensionalized equations, where ΔΠ is nondimensionalized
by kBTC2.

a. To zeroth order. The corresponding osmotic pressure con-
tribution matches the stationary solution (see also Ref. 22) and
writes

Π0 = σ0 × Δc,

where σ0 is defined by Eq. (9). Note that the osmotic pressure con-
tribution at the zeroth order satisfies the following relation to the
particle flux: Π0 = J0 + Δc (in dimensionless form).

b. To first order. We average the solution over a period to
obtain

Π1 =
ϵ2

2 ∫
δ1

−δ0

dx′Re[δc1(x′)] × u0(−∂xϕ)(x′). (20)

c. To second order. Only the zero frequency term δc0
2(x)

contributes to the osmotic pressure so that

Π2 = ϵ2
∫

δ1

−δ0

dx′Re[δc0
2(x
′
)] × u0(−∂xϕ)(x′). (21)

2. Relation to the particle flux
The (fully dimensionalized) solute flux is defined as

J = −D∂xc +
D

kBT
c(−∂xU). (22)

From Eq. (2), one then deduces that the time averaged flux ⟨J⟩ obeys
∂x⟨J⟩ = 0 so that

⟨J⟩(x) = −D∂x⟨c(x, t)⟩ +
D

kBT
⟨c(x, t)(−∂xU)(x, t)⟩

= const.
(23)

Using ΔΠapp = ⟨∫
x2
x1 dx c (−∂xU)⟩, one can integrate this result to

obtain

ΔΠapp = kBT[C2 − C1] +
kBTL

D
⟨J⟩ (24)

and in dimensionless form,

ΔΠapp = Δc + ⟨J⟩. (25)

Therefore, the osmotic contribution may be related to the solute
flux at any order and also in out-of-equilibrium conditions. We
stress that Eq. (24) is highly interesting because from the descrip-
tion of the solute flow, it allows us to quantify the osmotic pres-
sure contribution. In general, it is difficult to compute the osmotic
pressure contribution directly, and such a symmetry relation is
of great help to obtain the expression for the apparent osmotic
pressure.

The averaged flux can be calculated as ⟨J⟩ = J0 + ϵ2 J2, with the
first order term averaging to zero. Using Eqs. (8)–(15), one deduces

ΔΠapp = σ0Δc + (1 − σ0) ϵ2
×⋯

∫

δ1

−δ0

dx′Re[δc1](x′)(−∂x exp[u0ϕ(x′)]), (26)

where the rejection coefficient σ0 is defined in Eq. (9).
One can check that this expression matches the direct calcu-

lation of the osmotic pressure from the force (see above). Writing
ΔΠapp = σappΔΠ with ΔΠ = kBT [C2 − C1] (now fully dimen-
sionalized), σapp plays the role of an apparent rejection coefficient.
Note that σapp may depend on the concentrations C1 and C2 and
simplifies to

σapp[ω, C1, C2] = σ0 +
(1 − σ0) ϵ2

Δc
×⋯

∫

δ1

−δ0

dx′Re[δc1](x′)(−∂x exp[u0ϕ(x′)]). (27)

E. Explicit solution for the triangular potential
In the following, we will apply these results to the specific case

of a triangular shape for the potential U(x). This allows us to obtain
explicit analytic expressions for the concentration profile as a func-
tion of frequency. The analytic expressions are, however, cumber-
some, and we report the derivation and expressions in Appendix A.
In the following, we will focus on the implications of this
analysis.
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III. SYMMETRIC BARRIER, TOWARD OSMOSIS ON
DEMAND

We first investigate the symmetric barrier case [typically as in
Fig. 3(c)] using both the analytic results and standard numerical
simulations (see Appendix B for numerical simulation details). We
explore a range of modulation frequencies and modulation depths ϵ
while keeping the height u0 of the energy barrier fixed. In Figs. 3(a)
and 3(b), we show the analytic and numerical results for the appar-
ent flux ⟨J⟩ and the apparent osmotic pressure ΔΠapp. The ana-
lytic expansion at small ϵ is in fairly good agreement with the full
numerical simulation as long as ϵ ≲ 0.5.

For large forcing frequencies, the apparent osmotic pressure
ΔΠapp approaches the usual van ’t Hoff contribution kBTΔC, in other
words, the rejection coefficient plateaus to a constant value inde-
pendent of the frequency, as for static membranes. In this regime,
the concentration profile does not follow the temporal variations
of U(x, t) and thus effectively sees only its time-averaged value
⟨U(x, t)⟩t = U0ϕ(x). We, thus, expect

σapp(ω→∞) = σ0. (28)

As expected, this result does not depend on ϵ. It is indicated in
Fig. 3(b) by a small horizontal arrow.

For very low forcing frequencies, we expect the concentra-
tion profile at any time t to be in quasi-static equilibrium with the
potential so that

σapp(ω→ 0) = ⟨1 −
1

∫
1−δ0
−δ0

dx′eu0ϕ(x′)(1+ϵ cosωt)
⟩

t

, (29)

the latter may be approximated at small ϵ and in the case of a
triangular symmetric potential (δ0 = 1/2), one gets

σapp(ω→ 0) ≃ σ0 −
ϵ2

4
(1 − σ0)eu0 u2

0
1 + eu0

(1 − eu0)2 . (30)

Thus, when ϵ increases, we expect a decrease in σapp. That is not
necessarily obvious since the barrier effectively goes up and down in
cycles. This demonstrates in fact that for a given amount of energy,
more solute flux is gained by lowering the barrier by that amount
than is lost due to raising the barrier by that same amount. We plot
Eq. (30) as a function of ϵ in Fig. 3(d), and the values obtained with
the numerical results. The approximation of Eq. (30) is very robust
in reproducing the numerical results.

These results show that the osmotic pressure contribution is
strongly affected by the active component of the membrane. It is,
therefore, possible to tune the osmotic pressure and achieve “on
demand” values. Such a rich behavior is achieved, while only assum-
ing a symmetric potential profile U(x, t). In the following, we seek
the osmotic pressure response with an asymmetric potential pro-
file, which is expected to be even more varied, and explore the
consequences for filtration and separation.

IV. ASYMMETRIC BARRIER: OSMOTIC RESONANCE
A. Toward an osmotic pump and sink

In this part, we turn to asymmetric potential profiles and inves-
tigate their consequences on osmotic pressure. We are inspired by
the classical results on potential ratchets.23,27 Under an oscillating
asymmetric potential profile, one may expect non-trivial pumping
of the solute to occur for specific values of the frequency and poten-
tial shape. The qualitative principle of this ratchet-type mechanism
is sketched in Fig. 4 for various potential asymmetries, highlighting
that an oscillating potential may lead to pumping, or, conversely,
accelerate solute diffusion (“sink” regime). Moreover, an oscillating
barrier is known to induce the so-called stochastic resonance phe-
nomenon.31 Therefore, because of the fundamental relation between
the osmotic rejection coefficient and the solute flux demonstrated
in Eq. (24), these various effects on the solute flux should convert

FIG. 3. Transport through an active sym-
metric barrier. (a) Average solute flux
dependence on ω/ω0 when C2 = 1.82C0
and C1 = 0.18C0 and U0 = 5kBT, where
C0 is an arbitrary concentration unit.
Note that the solute flux is negative cor-
responding to the solute current going
from right to left as expected from stan-
dard relaxation in sketch (c). It is renor-
malized by ΔC. (b) Apparent osmotic
pressure ΔΠapp as a function of ω/ω0
for the same parameters. The osmotic
pressure is given in units of kBTΔC.
(c) Sketch showing the potential barrier
oscillation between two solute reservoirs
at different concentrations. (d) Numeri-
cal results and prediction from Eq. (30)
for the low frequency apparent osmotic
pressure.
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FIG. 4. Principle for osmotic pump and sink. (a) Initial configuration of the asym-
metric energy barrier U(x, t = 0) with concentration imbalance; (b) when
the barrier is decreased, the solute diffuses inwards; and (c) when the bar-
rier increases back, the solute that crossed the maximal point will be flushed
toward the right. If the frequency is well adjusted, essentially only the solute from
the left hand side will have diffused past the barrier and will be flushed to the
high concentration reservoir, therefore, acting as a pump. The process iterates
back to (a). (d) Initial configuration of an effective sink with initial configuration
inverted as compared to (a); (e) when the barrier decreases, the solute diffuses
inwards; and (f) when the barrier increases again at an appropriate time, the
solute from the right has diffused beyond the maximal point and is effectively
flushed to the left, thus increasing the effective flux as compared to a symmet-
ric barrier. The process iterates back to (d). This increased diffusion is termed a
“sink.”

into a non-trivial resulting osmotic pressure acting on the fluid. The
stochastic resonance phenomenon observed on the flux is, therefore,
expected to result in an “osmotic resonance.” This is what we clarify
in the present section.

B. Characterization of the osmotic resonance, time
scales, and amplitude
1. Osmotic resonance

As a proof of principle, we compute the solute flux and appar-
ent osmotic pressure in the case of an asymmetric potential profile.
We use both our analytic expansion and standard numerical sim-
ulations (see Appendix B). We show the results for the pumping
geometry and the sink geometry and for different barrier strengths
in Fig. 5. Note that the analytic expansion is quite robust, but at high
energy barrier strengths U0/kBT and at large ϵ, it deviates quantita-
tively from the simulations (though the observed trends are rather
similar). In the case of numerical simulations, ΔΠapp and ⟨J⟩ are
obtained independently and are in good agreement with the relation
of Eq. (24).

First, we clearly observe a resonance in both cases in the solute
flux and in the apparent osmotic pressure. A pumping regime can
indeed be achieved (left panels with ⟨J⟩ > 0, while C2 > C1). In terms
of osmotic pressure, this translates into an apparent osmotic pres-
sure greater than kBTΔC—or an apparent osmotic reflection coeffi-
cient greater than 1. This excess osmotic pressure translates into fluid
flow. Therefore, if hydrostatic pressure does not equilibrate osmotic

pressure, an increased flow of the fluid (including the solvent and
solute) is observed in the active osmotic pump regime (in contrast
to the static case).

Second, we clearly observe strong variations of the apparent
osmotic pressure that eventually can lead to a vanishing or a negative
osmotic pressure in the sink geometry in some frequency range [see
Figs. 6(b) or 9(f)]. One may, therefore, tune the sign of the osmotic
pressure contribution. When the apparent osmotic pressure is neg-
ative, this leads to a flow of fluid against the concentration gradient
(toward the dilute side). This fluid flow is accompanied by a flow of
the solute toward the dilute side. If the permeability of the system
is important, one may, therefore, expect a net pumping of the fluid
(hence water).

To further illustrate the origin of this phenomenon, it is inter-
esting to investigate a simple toy model with an ON/OFF potential
instead of a sinusoidal time dependence. This allows us to obtain
analytic expression for the frequency dependent osmotic pressure.
We report these results in Appendix C. While such results do not
aim at a quantitative comparison, they highlight the phenomenon
of osmotic resonance in both the pump and sink regimes (see
Fig. 9).

2. Resonance frequency
We now investigate in more detail the resonance frequency ωc

at which osmotic resonance occurs. It is strongly dependent on the
parameters of the system [see, for example, Fig. 6(b)], e.g., on the
parameters determining the membrane interactions with the solute
(barrier strength U0/kBT and asymmetry parameter δ0).

In the pump or the sink process, there are two time scales of
interest: (i) a diffusive time scale that describes the typical time that
the solute takes to reach the maximal barrier point (when the bar-
rier is down) and (ii) an advection time scale corresponding to the
time it takes to “slide down” to the other side when the barrier
is up again. Let us take the example of the sink process to evalu-
ate these time scales. For the sink process, the diffusive time scale
writes

τdiff =
L2δ2

0

2D
, (31)

where δ0 is the distance between the highly concentrated side and
the barrier peak. The advection process corresponds to sliding down
the other side of the barrier. It, thus, takes place with a velocity that is
the mobility multiplied by the force D

kBT ∂xU = D
kBT

U0
L(1−δ0) . Therefore,

the advection time scale writes

τadv =
L2
(1 − δ0)

2

D
kBT
U0

. (32)

At the resonance, one expects the period of oscillation of the barrier
to be equal to the maximal time scale for the pump or sink process
so that τc = max(τdiff, τadv), and therefore, the resonance frequency
obeys

ωsink
c /ω0 ∼ min(

1
δ2

0
,

U0

kBT
1

(1 − δ0)2 ), (33)
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FIG. 5. Osmotic pump and osmotic
sink. (a) Schematics showing the geom-
etry relevant for pumping, with a steep
energy barrier near the low concentra-
tion reservoir, C2 > C1 and δ0 < 0.5. (b)
Schematics showing the opposite geom-
etry relevant to a sink, with C2 > C1,
but δ0 > 0.5. (c) and (d) Simulated
(solid lines) and analytic (dashed lines)
results for the effective normalized flux
⟨J⟩(ω) and (e) and (f) osmotic pressure
ΔΠapp(ω). The results are plotted for
several energy barrier strengths in differ-
ent colors, and ϵ = 1.0 for simplicity. The
analytic curve for U0/kBT = 10 shows a
very small positive flux around the res-
onance. In the pumping geometry, δ0
= 0.1 was taken, while in the sink, δ0
= 0.9. For all data, C2 = 1.82C0 and C1
= 0.18C0.

and similarly,

ωpump
c /ω0 ∼ min(

1
(1 − δ0)2 ,

U0

kBT
1
δ2

0
). (34)

We plot the resonance frequency dependence with respect to
U0/kBT and δ0 in Figs. 6 and 7. In Fig. 6, the linear dependence on
U0/kBT expected from Eq. (33) is clearly observed for intermedi-
ate values of U0/kBT. For large values of U0/kBT, we may observe
the expected saturation when U0/kBT ≃ δ−2

0 (in particular, for
U0/kBT ≳ 10 and δ0 = 0.2; larger values of U0/kBT were not accessi-
ble either numerically or with the analytic expansion due to con-
vergence issues). For small values of the barrier strength U0/kBT,
the process becomes very weak and the scaling laws are no longer
relevant.

In Fig. 7, the inverse quadratic dependence on δ0 is observed
in a narrow region, since it is expected for large U0/kBT and large
δ0 (visible still for δ0 ≳ 0.05 and U0/kBT = 10). For small values of
δ0, the dependence of ωc on δ0 is expected to saturate from Eq. (33),
and this is clearly observable in Fig. 7. In the intermediate regimes,

more entangled dynamics are involved that may, in particular,
require the introduction of other relevant time scales for the system.
We leave investigation of these more complex dynamics for future
work.

Equation (33) provides a simplistic understanding of the
dynamics involved and demonstrates that active osmotic flow may
be strongly impacted by the specificities of the membrane in terms of
asymmetry and solute interaction strength. Note that the amplitude
of the resonance may also be tuned with the different parameters at
hand. As a rule of thumb, the greater the asymmetry (so for large
values of the potential strength U0/kBT or small values of δ0), the
greater the resonance.

V. ENERGETIC EFFICIENCY OF ACTIVE OSMOTIC
PUMPING

In the context of filtration, it is of utmost relevance to quan-
tify the efficiency of the active osmotic process and eventually com-
pare it to other more common filtration processes. We consider the
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FIG. 6. Resonance frequency of
active osmosis as a function of the
barrier strength U0/kBT. (a) Osmotic
pump geometry and parameters. (b)
Apparent rejection coefficient σapp

calculated from simulations with
respect to the forcing frequency ω
for different values of the asymme-
try parameter δ0, U0/kBT = 10,
and ϵ = 1.0. (c) and (d) Resonance
frequency ωc with respect to the forcing
strength U0/kBT at different δ0 (same
color scale for both graphs) and ϵ = 0.5
for the sink and pump geometries.
Analytical curves are obtained from
the expansion discussed in the
main text. A scaling law with slope
ωc/ω0 ∝ U0/kBT is indicated in gray.
Values for the concentrations are C2 =
1.82C0 and C1 = 0.18C0 in the pump
configuration with δ0 < 0.5, and vice
versa for the sink configuration.

active osmosis (AO) configuration in a geometry similar to Fig. 8(a),
where the lateral reservoirs are closed and therefore the fluid flow Q
= 0. When the membrane is dynamically activated—e.g., when the
barrier U(x, t) is oscillated—the average power spent writes (fully
dimensionalized)33

PAO
=

1
T ∫

T

0
dt∫

Lδ1

−Lδ0

S dx c(x, t)
∂U(x, t)

∂t
, (35)

where T = 2π/ω and S is the total accessible surface where the poten-
tial is exerted on the solute. The useful power generated by active
osmosis corresponds to the chemical potential change of solute

driven from one side to the other, which writes

PAO
u = ⟨J⟩SkBT ln

C2

C1
. (36)

Therefore, the efficiency of the active osmotic process is simply

ηAO
=
PAO

u

PAO . (37)

We show in Fig. 8(c) the efficiency of the active osmotic process
as a function of the oscillation frequency ω, for a set of parame-
ters, varying only the membrane interaction strength U0. We find
that the efficiency reaches a maximum (here up to ηAO

≃ 0.8) for

FIG. 7. Resonance frequency of the active osmotic barrier with respect to its asymmetry δ0: (a) pumping configuration with C1 < C2 (here, C2 = 1.82C0 and C1 = 0.18C0) and
(b) sink configuration with C1 > C2 (here, C1 = 1.82C0 and C2 = 0.18C0). In both panels, the resonance frequency ωc is plotted with respect to the asymmetry parameter δ0,
at different forcing strengths u0 = U0/kBT (same color scale for both graphs), for the sink and the pump geometries. Numerical and analytical data are for ϵ = 0.5. A scaling
law with slope ωc/ω0 ∝ δ−2

0 is indicated in gray.
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FIG. 8. Efficiency of active osmosis vs reverse osmosis. (a) Active osmosis with oscillating asymmetric barrier and fixed reservoir volumes. (b) Reverse osmosis counterpart,
where a large external pressure is applied on one reservoir, driving solvent flow through pores impermeable to the solute. (c) Efficiency of both processes under the conditions
where the thermodynamic collected energy is the same in both cases [solid lines, active osmotic pumping as defined by Eq. (37) and calculated from simulations with δ0 = 0.9,
ϵ = 1 in the pump geometry with C1 = 1.82c0 and C2 = 0.18c0; dashed lines, reverse osmosis as defined by Eq. (45), with r = 10 nm and c0 = 0.001M]. The corresponding
resonant osmotic frequency for the range of parameters used is indicated with a gray bar. (d) Efficiency of active osmosis as compared to reverse osmosis, as calculated
from simulations with the same parameters as in (c), U0/kBT = 8 and molecular size a = 1 Å, for different values of r and c0 (here, translated in mol/l). The efficiency zone
corresponds to active osmotic pumping being more efficient than reverse osmosis.

a given value of the frequency, say ωη. Remarkably, ωη is signifi-
cantly higher than the resonance frequency ωc. In fact although the
energy recovered PAO

u is indeed maximal for ω = ωc, the energy
expense PAO is monotonically decreasing with ω. This can be under-
stood from the fact that at large frequencies, the solute has less
time to diffuse around and, therefore, the energy expense to drive
the solute from a point to another is smaller. Furthermore, the
maximal efficiency ηAO(ωη) strongly depends on the parameters
of the system (δ0, Δc, U0). Although we do not carry here an in-
depth study of these dependencies, we simply note that typically
there is an optimal value for the membrane interaction strength
U0. When U0 ≪ kBT, there is almost no pumping flux; conversely,
when U0 ≫ kBT, more energy than needed is spent to drive the
solute.

We now compare the active osmotic process to a prototypical
filtration process: reverse osmosis, depicted in Fig. 8(b). The reverse
osmosis process similarly consists of two fluid reservoirs containing
the solvent and solute in concentration C1 > C2. The reservoirs are
separated by a membrane, which is permeable to the solvent alone
[equivalent to a very large static barrier U(x, t), with U0 ≳ 10 kBT].
An operator applies a pressure in order to impose a reverse osmo-
sis flow rate Q. The useful power extracted from the process cor-
responds to the reduction in mixing entropy of the system and
writes

PRO
u = Q(C1 − C2)kBT. (38)

Note that this expression is not the same as for the AO process
Eq. (36), which only involves the transport of solute and no flow
of solvent. To compute the thermodynamic efficiency, we now need
to estimate the power that is dissipated. Without yet considering
any physical membrane, the system necessarily dissipates energy
through the friction of the solvent on the solute. Indeed, as the sol-
vent passes from the left reservoir to the right, it leaves behind the
solute it contains, which gives rise to a relative velocity between the
solvent and the solute particles. If we denote L as the characteristic
thickness of the membrane and S as its surface area, then each solute
particle generates on the solvent a friction force equal to μQ/S, where
μ = D

kBT is the mobility of the solute. Since there are C1LS immo-
bile solute particles, and the solvent moves with speed QS, the power
dissipated through friction is

PRO
f =

C1L
μS

Q2. (39)

If we now assume that the solvent has to pass through n physical
channels of circular cross-sectional area s = πr2 (we assume S = ns),
then we have to take into account the power dissipated through the
hydrodynamic resistance of the channels, Rh = 8πηL/s2, where η is
the viscosity of the solvent (assuming a no-slip boundary condition
at the walls). The dissipated power reads

PRO
h = nRh(Q/n)

2
= 8πηL

Q2

ns2 . (40)
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We have in fact estimated the hydrodynamic permeability Lhyd of
the RO membrane,

PRO
f + PRO

h ≡
1

Lhyd

Q2

S
, (41)

with

L−1
hyd =

s
8πηL

+
C1L
μ

. (42)

Although this result relies on a model of discrete pores, it yields an
estimate which agrees very well with the values reported for state-of-
the-art RO polymeric membranes,34 when evaluated for nanometer-
sized pores.

We may now compute the thermodynamic efficiency of the
reverse osmosis process as

ηRO
=

PRO
u

PRO
u + PRO

f + PRO
h

, (43)

expanding

ηRO
=

1

1 +
L
D

C1

C1 − C2

Q
S

+
8πη

(C1 − C2)kBT
L
s

Q
S

. (44)

As expected, the efficiency equals 1 for vanishing flow rate Q;
however, it decreases at increasing flow rates.

To compare the two processes, we require that they generate the
same useful power. For a given AO current ⟨J⟩, this sets the RO flow
rate Q as S⟨J⟩ ln(C2/C1)/(C2 − C1). Substituting in Eq. (44) yields

ηRO
=

1

1 +
L⟨J⟩
Dc0
(

c0

ΔC
)

2
ln

C2

C1
(

C1

c0
+

4
3πar2c0

)

, (45)

where we made use of Einstein’s relation D = kBT/6πηa, with a being
the molecular size of the solute. From Eq. (45), it is clear that RO
becomes inefficient in the limit of very small pore sizes, where the
hydrodynamic resistance is significant. Interestingly, it also shows
that the efficiency is a decreasing function of ⟨J⟩, while the efficiency
of AO is maximal around the highest values of ⟨J⟩. Therefore, we
expect RO to be inefficient at the fluxes where AO is at its peak effi-
ciency. This can be seen, in particular, in Fig. 8(c), where we show
the efficiency of both processes.

We compare in Fig. 8(d) the efficiency of the reverse osmo-
sis ηRO and the active osmosis ηAO processes for the optimal value
of U0 at different forcing frequencies ω. The results indeed show
that there exists a broad range of parameters (for example, nearly
all concentrations c0 ≲ 1M and r = 1 nm) where the active osmotic
process is more efficient (and even up to 100 times more efficient)
than the reverse osmosis process. This is extremely encouraging for
filtration applications with active membranes. Furthermore, from
a more fundamental point of view, it is fascinating to see how it
is possible to bypass the limitations of filtration across static mem-
branes by injecting energy at the scale of membrane pores (and
not at a macroscopic scale as is the case with reverse osmosis). To
some extent, this echoes the “apparent second principle breaking”
in active matter (with active particles, self-spinners, and so on35,36),
where energy is also being consumed at the very local scale. In this

strongly out-of-equilibrium regime, the principles underlying osmo-
sis and selectivity can bypass the simple “trade-off” picture of sep-
aration and have, therefore, a great potential for new separation
methodologies.

VI. CONCLUSION
To summarize, we draw here a first picture to understand

osmosis across active membranes or out-of-equilibrium osmosis. We
provide a robust model to describe and account for the osmotic
pressure as a function of the typical oscillating frequency of the
membrane dynamics. Remarkably, this kinetic model shows that
osmotic flow through the membrane is still described by the Kedem–
Katchalsky transport equations as37,38

⟨Q⟩ = −Lhyd(Δp − σappkBTΔC), (46)

where σapp is an apparent rejection coefficient that takes into account
the specifics of the membrane and its dynamics. The solute flow
(neglecting convection) may also be written as

⟨J⟩ = −
D
L
ωappΔC, (47)

where ωapp still verifies the fundamental reciprocal relation ωapp = 1
− σapp. However, all coefficients are now complex functions of the
frequency of the active membrane.

Our model clarifies the underlying principles of active osmo-
sis. In particular, we have rationalized that at very low frequencies,
a dynamic membrane (e.g., pore opening and closing) behaves as
an apparently more permeable membrane, whereas at very large
frequencies, a dynamic membrane behaves as an apparently static
membrane. In the intermediate regime, very interesting function-
alities may be achieved, provided that the membrane has some
asymmetry: resonant pumping or sink with a variety of tuneable
features. Interestingly, active osmosis may be easily connected to
potential ratchets, and intuition from this field may be translated
to the description of active osmosis. Finally, we demonstrate that
in nanofiltration processes, active osmosis may outperform reverse
osmosis in terms of energetic efficiency.

The model considered here is simple and provides a basis to
study a number of effects. For example, we expect (see Fig. 10 in
Appendix C) that asymmetry not just in space but also in time, e.g.,
how fast the barrier is activated up vs down, may lead to more inter-
esting regimes. Going further, a number of details at the nanoscale
could be accounted for, so as to provide a more systematic and thor-
ough description of nanofiltration across membranes: this includes,
for instance, electrostatic effects or surface interactions. The impact
of noise (of the membrane interaction potential15 or due to the
small number of solutes in the channel39,40) on osmotic pressure is
expected to be relevant at these scales and has to be explored. Such
extensions will be the subject of future work. However, the main
generic features of active osmosis are expected to be captured by the
present model.

Overall, our model, even simplistic, provides a number of rules
of thumb to design the active membrane, e.g., in terms of the asym-
metry of the membrane or the typical frequency range at play.
In practice, composite membranes with tuneable sieving proper-
ties, for example, gated by applied voltage, are a natural lead to
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explore the fabrication of such active membranes. Active osmo-
sis through dynamic membranes has a considerable potential to
broaden the current paradigm of filtration, building the basis for
advanced filtration devices and artificial ionic machinery.
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APPENDIX A: EXPLICIT SOLUTION OF THE
TRIANGULAR PROFILE BARRIER
1. Triangular profile

We assume that the potential is piece-wise linear, i.e.,

ϕ(x) = 1 +
x
δ0

for − δ0 < x < 0,

ϕ(x) = 1 −
x
δ1

for 0 < x < δ1

such that the force γ = −∂xϕ = −1/δ0 (respectively, + 1/δ1) for x < 0
(respectively, x > 0). Equation (11) reduces to

jωδc1(x) = ∂xxδc1(x) − u0γ∂xδc1(x) − γ∂xf (x), (A1)

where we introduced f (x) = u0c(x). The average concentration
c(x) is easily computed as, for x < 0,

c(x) = (1 − Δc)e−u0(1+x/δ0) + Δc[δ0
e−u0(1+x/δ0) − 1
(eu0 − 1)

] (A2)

and for x > 0,

c(x) = e−u0(1−x/δ1) − Δc[δ1
e−u0(1−x/δ1) − 1
(eu0 − 1)

]. (A3)

Equation (A1) and a full expansion at the second order for
c(x) can be readily calculated. The osmotic pressure can be deduced
accordingly. On the left domain or x < 0, Eq. (A1) can be rewritten
as

∂xxδc1(x) +
u0

δ0
∂xδc1(x) − jωδc1(x) = −

1
δ0
∂xf (x), (A4)

and on the right domain,

∂xxδc1(x) −
u0

δ1
∂xδc1(x) − jωδc1(x) =

1
δ1
∂xf (x). (A5)

2. Expression of δc1

Let us introduce

λL
± =

1
2
⎛

⎝
−

u0

δ0
±

√

(
u0

δ0
)

2
+ 4jω

⎞

⎠
, (A6)

λR
± =

1
2
⎛

⎝

u0

δ1
±

√

(
u0

δ1
)

2
+ 4jω

⎞

⎠
. (A7)

The solution for Eq. (A1) then writes, for x < 0,

δc1(x) = αLeλ
L
−

x + βLeλ
L
+x +

eλ
L
−

x

√

(
u0
δ0
)

2
+ 4jω

∫

x

0
dx′ e−λ

L
−

x′
(∂xf )(x′)

−
eλ

L
+x

√

(
u0
δ0
)

2
+ 4jω

∫

x

0
dx′ e−λ

L
+x′
(∂xf )(x′), (A8)

and for x > 0,

δc1(x) = αReλ
R
−

x + βReλ
R
+x
−

eλ
R
−

x

√

(
u0
δ1
)

2
+ 4jω

∫

x

0
dx′ e−λ

R
−

x′
(∂xf )(x′)

+
eλ

R
+x

√

(
u0
δ1
)

2
+ 4jω

∫

x

0
dx′ e−λ

R
+x′
(∂xf )(x′). (A9)

3. Boundary conditions
The boundary conditions are δc(x = −δ0) = δc(x = δ1) = 0. This

imposes

0 = αLe−λ
L
−
δ0 + βLe−λ

L
+δ0 +

e−λ
L
−
δ0

√

(
u0
δ0
)

2
+ 4jω

∫

−δ0

0
dx′ e−λ

L
−

x′
(∂xf )(x′)

−
e−λ

L
+δ0

√

(
u0
δ0
)

2
+ 4jω

∫

−δ0

0
dx′ e−λ

L
+x′
(∂xf )(x′) (A10)

and

0 = αReλ
R
−
δ1 + βReλ

R
+δ1 −

eλ
R
−
δ1

√

(
u0
δ1
)

2
+ 4jω

∫

δ1

0
dx′ e−λ

R
−

x′
(∂xf )(x′)

+
eλ

R
+δ1

√

(
u0
δ1
)

2
+ 4jω

∫

δ1

0
dx′ e−λ

R
+x′
(∂xf )(x′), (A11)

with f (x) = + u0c(x).
Two more subtle conditions are continuity conditions at

x = 0. The continuity of the concentration imposes δc1(0−) = δc1(0+)
so that

αR + βR = αL + βL. (A12)

The condition for the continuity of the (first order) flux can be
obtained by integrating Eq. (A1) between x = 0− and x = 0+, which
imposes

∂xδc1(0+
)−

u0

δ0
δc1(0+

)−
u0

δ0
c(0) = ∂xδc1(0−)+

u0

δ1
δc1(0−)+

u0

δ1
c(0).

(A13)
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After calculating the terms ∂xδc1(0−) = λL
−αL + λL

+βL and ∂xδc1(0+
)

= λR
−αR + λR

+βR, one deduces the continuity equation

− λL
+αL + λR

+αR − λL
−βL + λR

−βR = −u0[
1

δ0δ1
] c(0), (A14)

where we used the expressions of the λ’s to simplify things.

4. Full solution
The system of Eqs. (A10), (A11), (A12), and (A14) can be solved

to obtain the explicit expressions for α±(ω) and β±(ω) as a function
of frequency and potential parameters. We do not provide the full
expressions here, since they are highly cumbersome. We investigate
the results in the main text on several limiting situations.

APPENDIX B: NUMERICAL SIMULATION DETAILS
The Smoluchowski equations are solved with a finite differ-

ence scheme over 6 orders of magnitude of ω/ω0 and various other
parameters. To ensure global convergence, we perform a Crank–
Nicolson scheme and are especially careful that advection only car-
ries the upstream solute. The time step and space discretization were
chosen such that any reduction of either one (e.g., by a factor 2) leads
to no significant numerical difference in the results. The initial con-
centration profile corresponds to the static barrier for ϵ = 0. As we
seek averages over the oscillating process, we look for the average
of the osmotic pressure over five periods. When the simulation of
an extra period will not change the osmotic pressure by a signifi-
cant amount, the initial conditions are forgotten and the result is
converged.

In the simulations, time is nondimensionalized by ω such that
typical simulations will roughly take the same time to run. Note that
for very large frequencies, the relaxation from the initial conditions
is much slower as the allowed flux is much smaller, and therefore
simulations were run for longer times in that case.

The critical frequency at which the process is resonant corre-
sponds to the frequency at which the osmotic reflection coefficient
is maximum or minimum. As the simulation provides the osmotic
reflection coefficient at only discrete values of the frequency ω, we
perform a fit on a very narrow region around the maximum (respec-
tively, minimum; with a 4th order standard polynomial fit to account
for peak slight distortion) and obtain the critical frequency from
this fit. For each fit, the agreement with the simulation data is thor-
oughly asserted such that the critical frequency obtained is a reliable
value.

APPENDIX C: TOY MODEL FOR THE ASYMMETRIC
POTENTIAL PROFILE

We consider a time-dependent triangular potential with a spa-
tial extension similar to the previous analysis, i.e.,

ϕ(x) = 1 +
x
δ0

for − δ0 < x < 0,

ϕ(x) = 1 −
x
δ1

for 0 < x < δ1,
(C1)

where x is the dimensionless coordinate (in units of the membrane
width, say, L) and δ0 and δ1 are in dimension of L (δ0 + δ1 = 1).

However, we now consider a simplified time-dependence,
where this triangular potential is periodically ON/OFF for time-
lapse with period T,

U(x, t) = U0 × f (t) × ϕ(x), (C2)

with f (t) = 0 for t ∈ [kT; k(T + τ1)] and f (t) = 1 for t ∈ [k(T + τ1); (k
+ 1)T], with k = E(t/T) being an integer. Note that t is here in units
of τ0 = L2/D the diffusion time scale.

Boundary conditions for the concentration in the reservoirs are
C1 for x < −δ0 and C2 for x > δ1.

We will make several simplifying assumptions to work out the
model and obtain tractable results. First, we assume that the ON
period, with duration τ2 = T − τ1 is sufficiently long so that parti-
cles reach an equilibrium state in the potential. This “re-initializes”
the problem after each period T. Second, we will assume that the
energy barrier U0 is very large so that no particle can cross when
the potential is on. Such a high potential will also basically confine
particles for x < − δ0 and x > δ1, i.e., we neglect the extension of the
equilibrium density profile in the region [−δ0; δ1] when the potential
is ON.

Under these simplified assumptions, some interesting predic-
tions can be obtained. We recall that the solution for free diffusion
with initial condition c(x, t = 0) = Θ(x) (Heaviside) and boundary
conditions c(x = 0, t) = 1, c(x→∞, t) = 0 is

c(x, t) = ψ[
x

2
√

t
], (C3)

with

ψ(x) = [1 −
1
2
(1 + Erf(x)) +

1
2
(1 + Erf(−x))]. (C4)

Accordingly, once the potential is released (ON→OFF period),
one may simplify the solution for the concentration by superposing
diffusion from the two reservoirs into the membrane,

C(x, t) = C1 × ψ[
x + δ0

2
√

t
] + C2 × ψ[

δ1 − x
2
√

t
]. (C5)

The flux is defined as the number of particles which crosses the
barrier maximum at x = 0 in the OFF period. Indeed, once the poten-
tial is back to ON, the particle for x > 0 will be carried on to the right,
while the particles for x < 0 will be carried on to the left. Then, the
flux is accordingly defined as

⟨J⟩ =
1
T
× (NR −NL), (C6)

with

NR = ∫

δ1

0
dx C1 × ψ[

x + δ0

2
√
τ1
],

NL = ∫

0

−δ0

dx C2 × ψ[
δ1 − x
2
√
τ1
],

(C7)

i.e., the number of particles which have crossed x = 0 (from left to
right, or right to left) at the time τ1.

Let us introduce Ψ(x) = ∫x0ψ(x)dx. One may calculate

Ψ(x) =
1 − e−x2

√
π

+ x (1 − Erf(x)). (C8)
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Then, the flux (in units of D/L) is

⟨J⟩ =
1
T
× 2
√
τ1 × [C1 × (Ψ(

1
2
√
τ1
) −Ψ(

δ0

2
√
τ1
))

− C2 × (Ψ(
1

2
√
τ1
) −Ψ(

δ1

2
√
τ1
))]. (C9)

The characteristic frequency is ω0 = 2π/τ0. Then, T = 2π/ω and
τ1 = α × 2π/ω.

Now, we rewrite the expression in terms of frequency,
ω = 2π/T. Writing τ1 = αT (with α being the fraction of time with
OFF potential), one obtains the flux in units of L/D as

⟨J⟩
L
D
= 2
√

αω
ω0
× [C1(Ψ(

1
2
√
α

√
ω
ω0
) −Ψ(

δ0

2
√
α

√
ω
ω0
))

− C2(Ψ(
1

2
√
α

√
ω
ω0
) −Ψ(

δ1

2
√
α

√
ω
ω0
))]. (C10)

The osmotic pressure is accordingly defined as

ΔΠ = kBT [C2 − C1] +
kBT
D
× L × ⟨J⟩ (C11)

(with L = δ0 + δ1), and the apparent rejection coefficient is

σapp[ω, C1, C2] = 1 +
L
D
×
⟨J⟩

C2 − C1
. (C12)

The frequency dependent flux and osmotic rejection coeffi-
cient are plotted in Fig. 9, with several interesting features. First,
a resonance is clearly observed. What is remarkable is that (i) a
pump behavior is observed (left panels, J > 0, while C2 > C1)
and (ii) a change of sign is observed for the osmotic rejec-
tion coefficient. The latter means that one can tune the sign
of the osmotic pressure and it can even vanish for a given
frequency!

Finally, note that the toy model is a very good proxy to build
insight into the effect of asymmetric barriers not just in space but
also in time. In Fig. 10, we show how asymmetry in time dramat-
ically impacts the solute flux around the resonance frequency. We
observe that the longer the barrier is OFF, the more the solute is
pumped (or is sunk). This makes sense considering that the longer
the barrier is OFF, the more the solute can actually go past the
barrier peak. To improve our insight into these different regimes,
further computations have to be done that we leave for future
work.

FIG. 9. Toy model of resonant osmo-
sis. (a) Schematic showing the geom-
etry relevant for pumping, with a steep
energy barrier near the low concentra-
tion, C2 >C1 and δ0 < 0.5. (b) Schematic
showing the opposite geometry C2 > C1,
but δ0 > 0.5. (c) and (d) Simulated
(orange lines) and analytic (black lines)
results for the effective normalized flux
⟨J⟩(ω) [Eq. (C9)], and (e) and (f)
apparent osmotic pressure ΔΠapp(ω)
[Eq. (C11)]. The results are plotted for
δ0 = 0.1 in the pumping geometry and
δ0 = 0.9 in the sink geometry, C1 = 0.1,
C2 = 1.0; and in the numerical compu-
tation U0 = 10 kBT. The couple of red
arrows indicates regimes where pumping
is seen, and the ON–OFF times are kept
equal α = 0.5.
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FIG. 10. Asymmetric ON/OFF pumping. (a) Schematic showing the geometry rele-
vant for pumping, with a steep energy barrier near the low concentration, C2 > C1
and δ0 < 0.5. (b) Schematic showing the opposite geometry C2 > C1, but δ0 > 0.5.
(c) and (d) Analytic results for the effective normalized flux ⟨J⟩(ω) [Eq. (C9)] for dif-
ferent ratios of the ON–OFF respective times of the barrier. Note that α measures
how long the barrier is OFF. The results are plotted for δ0 = 0.1 in the pumping
geometry and δ0 = 0.9 in the sink geometry, C1 = 0.1, C2 = 1.0; and in the numer-
ical computation U0 = 10 kBT. The couple of red arrows indicates regimes where
pumping is seen.
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