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Abstract
Understanding vascular adaptation, namely what drives veins to shrink or grow, is key for the
self-organization of flow networks and their optimization. From the top–down principle of
minimizing flow dissipation at a fixed metabolic cost within flow networks, flow shear rate
resulting from the flows pervading veins is hypothesized to drive vein adaptation. Yet, there is no
proposed mechanism of how flow forces impact vein dynamics. From the physical principle of
force balance, shear rate acts parallel to vein walls, and hence, naively shear rate could only stretch
veins and not dilate or shrink them. We, here, resolve this paradox by theoretically investigating
force balance on a vein wall in the context of the vascular network of the model organism
Physarum polycephalum. We propose, based on previous mechanical studies of cross-linked gels,
that shear induces a nonlinear, orthogonal response of the actomyosin gel making up vein walls,
that can indeed drive vein dilatation. Furthermore, our force balance approach allows us to identify
that shear feedback occurs with a typical timescale and with a typical target shear rate that are not
universal properties of the material but instead depend smoothly on the vein’s location within the
network. In particular, the target shear rate is related to the vein’s hydrostatic pressure, which
highlights the role of pressure in vascular adaptation in this context. Finally, since our derivation is
based on force balance and fluid mechanics, we believe our approach can be extended, giving
attention to specific differences, to describe vascular adaptation in other organisms.

1. Introduction

Vascular flow networks continuously reorganize by growing new veins or shrinking old ones [1–3], to
optimize specific functions such as nutrient or information distribution or to adapt to changing
environmental cues. As an example, we show in figure 1 the spontaneous reorganization of the slime mold
Physarum polycephalum (P. polycephalum) over the course of a few hours, which shows significant vein
trimming. Vascular adaptation is seen across the plant and animal realms: from blood vasculature [2, 4–6],
via leaf venation in plants [7, 8] to vein networks making up fungi and slime molds [9, 10]. Understanding
vascular adaptation is crucial to probe healthy development [2] and disease growth [11, 12].

At steady state, Murray’s law [14] provides a rather reliable prediction of network morphologies across a
variety of animals and plants [15–19]. Briefly, we recapitulate the main phenomenological ingredients
yielding this law, based on the principle of minimum work. Murray stipulated [14] that energy dissipation in
a vein of radius a and length L is given by shear dissipation and metabolic expense to sustain the vein

E =
1

2

Q2

R
+π bLa2 =

4µLQ2

π a4
+π bLa2, (1)
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Figure 1. Bright-field images of a reorganizing specimen of Physarum polycephalum, from a reference state (A) and 54 min later
(B). Adapted with permission from [13].

where R= π a4/8µL is the vein’s hydraulic resistance assuming Poiseuille flow in the vein, b is a local
metabolic constant per unit volume, Q the flow rate, and µ the fluid’s viscosity. The principle of minimum
energy expense suggests searching for the minimum of E with respect to the vein radius a, which gives the
relation a6 = 8Q2µ/bπ2. Here, and in what follows, we use the convention that for coordinates xi and xj, and
fluid velocity components vi and vj, the shear rate components are τij = ∂vi /∂xj + ∂vj/∂xi. At a vessel wall
undergoing Poiseuille flow, shear rate is usually defined as τ ≡ τrz where r is the radial coordinate, and z the
coordinate along the vessel wall. If we calculate the shear rate τ = 4Q/π a3 in this optimal state, we obtain
that shear rate is constant and equal to an optimal value τ =

√
b/µ≡ τ0, independent of vein radius aa.

Beyond the steady state, dynamic adaptation of veins has often been modeled relying on the following
phenomenological adaptation equation for individual veins:

1

a

da

dt
=

1

tadapt
(f(τ)− f(τ0)) (2)

where a(t) is the vein radius at time t, tadapt an adaptation timescale, τ the local shear rate in the vein and f(τ)
is a non-dimensional monotonically increasing function such that f(τ = 0) = 0 [20]. We will specify the
specific functional form f(τ) later. Note that we will, here, use τ to represent the shear rate in a vein. It is also
common to discuss shear stress σ, which is related to the shear rate as σ = µτ where µ is again the fluid’s
viscosity. At steady state, the shear rate is constant and equal to the target shear rate value τ = τ0, consistent
with Murray’s law. The parameters tadapt and τ0 are usually taken to be network dependent but constant
across the organism [3, 8, 18, 20–29].

The variety of functions f(τ) used in such phenomenologicalmodels already points to a lack of consensus.
Some works investigate f(τ)∼ |τ | [18, 20–24, 28, 29] with possible generalizations and extensions [8], while
others consider f(τ)∼ log(τ) [25, 26] and extensions [27]. Notably, a rather recent work [3] follows
Murray’s law of minimizing energy dissipation to arrive at f(τ)∼ τ 2. However, there is currently no effort to
understand the mechanistic origin of such an adaptation rule. We, therefore, lack the chance to validate the
functional dependence on shear rate.

In addition, an adaptation rule with shear rate driving tube dilation or shrinkage is rather
counter-intuitive from a mechanical perspective. In all vascular biological networks [3, 8, 18, 20–27], the
same laws govern laminar flow through slender veins: the shear rate τ , evaluated on the surface of a vein, acts
on the longitudinal direction along the vein. Therefore, naively shear rate can only extend a vein
longitudinally, but dilatation or shrinking, namely changes in the vein radius a(t), may not arise. Other
effects, such as the Bernoulli effect, highlight the role of pressure in vascular adaptation, which is discarded in
shear oriented models as in equation (2). While the Bernoulli effect does not prevail in vasculature systems
that often operate at low Reynolds numbers, the role of pressure needs to be better understood.

In this work, we reconcile the paradox of how shear rate can drive vein radius changes and derive
equation (2) by establishing a detailed mechanical force balance on a vein wall. To this end, we focus our
derivation on the broadly studied model organism P. polycephalum. One important specificity of
P. polycephalum is that its veins are encapsulated in an actomyosin fiber cortex. For the latter, recent
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experimental studies [30, 31] show that cross-linked actin fibers respond orthogonally to shear. We propose
as a potential mechanism that such orthogonal response to shear may dilate or shrink veins beyond just
acting in the longitudinal direction. The detailed characteristics of the actomyosin fiber cortex determine the
exact shape of f(τ), which should be increasing with τ and for P. polycephalum is well approached by
f(τ)∝ τ 2. Our investigation also shows that f(τ) could take other shapes according to the cortex’s mechanical
properties that vary across biological systems. Finally, and in contrast with previous assumptions, we find
that tadapt and τ0 are local quantities that vary smoothly and slowly throughout the network but are
location-specific. Interestingly, we find that τ0 is related to local hydrostatic pressure, confirming the role of
pressure in vascular adaptation. Our work, therefore, opens up the possibility of understanding vascular
reorganization from experimental data; see our accompanying mostly experimental work [13].

2. Problem setup

We perform a force-balance derivation in the context of vascular adaptation of the veins formed by the
prototypical slime mold P. polycephalum. While we make along the way several assumptions, we, here,
discuss their validity in P. polycephalum and also their relevance in other systems. We recapitulate these
approximations in table 1. We use these approximations for simplicity, assuming that fundamental aspects of
the force transmissions are still conserved even in the light of these simplifying assumptions. In addition,
these approximations allow us to identify essential modeling ingredients to exhibit an adaptation rule similar
to equation (2).

2.1. P. polycephalum’s vasculature: model with a viscoelastic shell encapsulating a Newtonian fluid
Here, we investigate the vascular networks formed by the unicellular slime mold P. polycephalum. The body
of the organism comprises a network of soft slender tubes. The tube walls enclose a cytoplasmic fluid that
contains the nuclei and flows freely through the network [32]. An actin-rich actomyosin cortex is anchored
to the cell membrane lining the tubes. Flows in the veins arise from rhythmic contractions of vein walls due
to actomyosin activity in the cortex [33]. The period of oscillating flows and periodic contractions is rather
fast, on the order of 1–2 min [34, 35], while long-term vein adaptation arises over 10–100 min. The gel-like
walls of the tube are quite complex, forming a porous structure allowing fluid flow through small channels
and invaginations along the wall [32].

While the structure of the tubes is complex, it has been shown that flows in P. polycephalum follow
Poiseuille law rather remarkably [13, 36–38]. This means that cytoplasmic fluid can be treated as a
Newtonian fluid. Flows nearly vanish at the inner wall boundaries, suggesting that the remaining flows inside
the porous wall can be neglected as a first approximation. In addition, the wall’s structure is gel-like, with a
viscoelastic response [39, 40]. We will therefore treat the wall as a viscoelastic solid. Note that, assuming
Newtonian fluid flow inside a viscoelastic shell is a common modeling framework in vasculature studies, in
blood flow [41–44], in P. polycephalum [45], in leaf venation [46] and artificial systems [47].

2.2. Low Reynolds number flows in the contractile network
We model flow in a single vein filled with cytoplasmic fluid considered incompressible (see figure 2). The
vein radius undergoing rhythmic, peristaltic contractions is given by a(z, t), where z is the longitudinal
coordinate along the vein and t time. The radial coordinate is denoted by r. We consider for simplicity that
the vein has cylindrical symmetry. The flow field inside the vein is vr(r,z, t) in the radial direction and
vz(r,z, t) along the vein axis, while pressure is written as p(r,z, t).

We start by calculating relevant non-dimensional numbers characterizing the flow to simplify the
Navier–Stokes equations describing the flow field in the contractile vein.

First, vein contractions can be treated within the lubrication approximation, where the wavelength of the
peristaltic contractions λ is larger than the average vein radius a0. In fact, in P. polycephalum, the contractile
wavelength typically extends over the organism’s size [10], λ≃ 5 mm, while the typical radius of a vein is
a0 ∼ 100 µm. Hence, we can define the small non-dimensional number ϵλ = a0/λ≪ 1. We can, therefore,
apply the lubrication approximation, which will allow us to keep only first-order terms in ϵλ in the
Navier–Stokes equations using the hierarchy of derivatives ∂vz

∂r ∼ 1
ϵλ

∂vr
∂r ∼ 1

ϵλ
∂vz
∂z ∼ 1

ϵ2λ

∂vr
∂z , see also e.g.

[47, 54, 55].
Second, the appropriate Reynolds number for flows in contractile veins is Re= ρca0

µ ϵλ [56] where c is the
typical speed of the contractile wave, µ is the dynamic viscosity and ρ the fluid density. A typical value for the
cytoplasmic viscosity is µ= 1.5× 10−3 Pa · s [57, 58]. The speed of the contractile wave is c= λ/T where
λ≃ 5 mm is the scale of the organism and T≃ 1–2 min is the contraction period measured in
P. polycephalum [10, 34, 35]. We find c≃ 50 µm · s−1 also agreeing with flow velocities inside veins, directly
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Table 1. List of all assumptions used in the derivation and specificity with respect to P. polycephalum.

Assumption Applicability in P. polycephalum Applicability in other systems

Enclosed fluid

Low Reynolds numbers Yes [10, 36] Also low in leaves [48]; intermediate to
high Reynolds in blood flow [49] but
low in blood vasomotion [50]

Newtonian fluid/Poiseuille flow Yes [36, 37] Works well in leaf venation [48, 51];
Non-newtonian models better
describe blood flow [52], and point to
a possible extension

No slip at the wall Yes, but slip could be investigated in
line with flow inside the porous
shell [32, 53]

Works well in blood flow
vasculature [43], in leaves [48]

Incompressible fluid Yes Common approximation in blood
flow [43] and leaves [48], extensions to
compressible wave propagation
exist [47]

Lubrication approximation
∂a/∂z≪ 1

Yes Common approximation [43, 54]

Encapsulating shell

Viscoelastic solid shell Yes, but the porosity of the shell could
be explored in P. polycephalum [32]

Works well in blood flow
vasculature [43] or leaf venation [46]

Thickness of the visco-elastic shell
e/a≃ const.

Yes, see figure 4, but could account for
thickness dynamics in a more detailed
investigation

Common approximation for
vasculature models with a thin
shell [41–45, 47]

Orthogonal response of the shell when
sheared

Yes, since the shell is made mostly of
an actomyosin cortex for which this
response exists [31]

See section 5.2.

Dynamics

Presence of short and long timescale
variations

Yes, due to actomyosin-powered
contractions

These are washed out by visco-elastic
features of the shell in any case, which
is quite common in models [41–45,
47]

Figure 2. Cross-sectional and longitudinal sketch of a vein of radius a(z, t) filled with fluid flowing with longitudinal speed
vz(r,z, t), where z is the longitudinal coordinate and r the radial one. The vein is encapsulated in a thin viscoelastic shell of
thickness e(z, t). Other variables are described in the main text.

measured from our own velocimetry measurements [13]. Taking the density ρ of water, this yields
Re≃ 0.003ϵλ where ϵλ ≪ 1, which enables us to neglect non-linear terms in the Navier–Stokes equations.

Finally, we evaluate the Womersley number αW =
√

ρa20ω
µ [59] with ω = 2π/T. The Womersley number

quantifies the relative importance of time-dependent inertial terms in the Navier–Stokes equation with
respect to viscosity terms. We find αW ≃ 0.02. We can therefore neglect time-dependent inertial terms in the
Navier–Stokes equations.
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Figure 3. Sketch of the timescales dictating the time evolution of a vein’s radius in P. polycephalum. Here, we are interested in
adaptation at the single vein level, over long timescales corresponding to average growth or shrinkage of the vein.

All in all, the Navier–Stokes equations describing the flow field inside the vein reduce to
0=−∂p

∂z
+µ

1

r

∂

∂r

(
r
∂vz
∂r

)
,

1

r

∂ (rvr)

∂r
+

∂vz
∂z

= 0.
(3)

Notice that although we arrived at such equations by determining that the non-dimensional numbers ϵλ, Re
and αW are small in P. polycephalum, these numbers are usually small across a wide variety of biological
systems [54].

Solving these equations in the limit of the lubrication approximation where the dependence of ∂p
∂z on r

can be neglected yields the flow profiles [10]

vz (r,z, t) = − a2(z,t)
4µ

∂p
∂z

(
1−

(
r

a(z,t)

)2)
,

vr (r,z, t) =
∂a(z,t)

∂t
r

a(z,t)

(
2−

(
r

a(z,t)

)2)
− a(z,t)2

4µ
∂p
∂z

r
a(z,t)

∂a(z,t)
∂z

(
1−

(
r

a(z,t)

)2)
.

(4)

Finally, conservation of mass imposes that, along the vein,

∂

∂t

(
π a2 (z, t)

)
=− ∂

∂z

(
2π

ˆ a(z,t)

0
vz (r,z, t) rdr

)
=− ∂

∂z

(
−π a4

8µ

∂p

∂z

)
(5)

and allows us to infer an equation relating the pressure field p to the contraction profile a(z, t). The
remaining missing equation to fully characterize the four variables p, a(z, t), vr, and vz corresponds to the
force balance on the vein wall, which we detail in section 3.

Finally, longitudinal variations along the vein segment axis z, ∂a/∂z∼ ϵλ can be neglected, as we
assumed ϵλ ≪ 1. From now on, we therefore use a(t) = a(z, t).

2.3. Timescales of the vein radius evolution a(t)
We will here seek an equation on the evolution in time of the vein radius a(t), via force balance on the vein
wall. To understand precisely what this equation will mean, it is relevant to discuss as a preliminary the
characteristic time variations of a(t).

The radius of the vein evolves in time according to processes occurring at three different timescales—see
figure 3. In order of short to long, (i) peristaltic contractions induce short-time vein deformations; then (ii)
veins deform on longer timescales corresponding to growth or disassembly of the wall material; (iii)
eventually, network-wide adaptation occurs. Here, we are interested in (ii), which requires to coarse-grain
over the short time peristaltic contractions of (i). To distinguish the two timescales (i)–(ii), we will consider
the averaging operator ⟨·⟩, which is an average over short timescales, typically corresponding to the short
peristaltic contractions in P. polycephalum. We define this averaging operator precisely in section 3.2.2. The
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Figure 4. (A) Apparent wall thickness e versus vein size a for 33 randomly selected veins of the specimen in figure 1. The Pearson
correlation between e and a is 0.63, and the data is indeed correlated with a p-value p< 10−4. (B) Histogram distribution of the
associated apparent ratios e/a for all 33 veins.

short-time averaged radius a0(t)≡ ⟨a(t)⟩ therefore only has variations over long timescales, corresponding
to growth or disassembly. In contrast, a(t)− a0(t) corresponds to short-time peristaltic deformations.

We can neglect inertial relaxation on the vein dynamics. We can demonstrate this by comparing typical
timescales. The density of the vein wall is typically ρC ≃ 103 kgm−3. We seek an upper bound on the
relaxation of inertia. Since values for the gel viscosity vary in the literature [39, 40, 45] we use a lower
estimate for the gel viscosity η ≃ 240 Pa · s. This implies that the timescale for the relaxation of inertia is at

most tinertia =
a2ρC

η ≃ 103×(50.10−6)2

240 ≃ 10−8 s. Hence, tinertia is much shorter than any other relevant timescale
in the system.

2.4. Thickness of the vein walls
We must also discuss how the vein wall’s thickness evolves. Direct observations on the specimen presented in
figure 1 over several vein sizes suggest the thickness of the vein wall e is correlated with the vein size a (see
figure 4). This means the ratio of thickness to size is roughly constant e/a≃ const. Since different vein sizes
represent veins at different adaptation stages, we can assume that in general and with time, this ratio is a
constant ϵe ≡ ⟨e(t)⟩/⟨a(t)⟩. The typical ratio we observe from microscopy is ϵe ≃ 0.1− 0.3. Considering the
tubular geometry and ensuing variations in light absorption, this ratio could be slightly overestimated.

When veins shrink, they at most shrink down to some small radius value a≃ 10–20 µm and then are
‘retracted’ into the network. Hence, the proportionality relation e/a= ϵe is also satisfied even in small veins,
and the thickness of a vein wall never vanishes.

In the following, we will, therefore, consider the thin shell approximation. For simplicity, we will only
model the dynamics for a(t), assuming that the dynamics for the vein thickness e(t) closely follow that of the
radius a(t).

3. Force balance on a vein wall

3.1. Force balance and viscoelastic response of the tube wall
We will now balance forces on a vein wall for a small, ring-like vein segment of infinitesimal length δℓ and
radius a. Since we are interested in vein adaptation dynamics, that is to say, in the time evolution of a, we will
enumerate all the circumferential stresses, since these are the only ones that may contribute to radius
dilatation or shrinkage. The sum of all these stresses results in contributions σtot. Notice that any radial stress
σrr , such as pressure p, can be positioned in the circumferential direction as σrra/e where e is the vein
thickness and a its radius, within the thin shell approximation [43].

These circumferential stresses σtot are balanced by tensile and viscous adaptation of the vein wall, for
which we establish a minimal model.
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Figure 5. Schematic of the viscoelastic response model of a vein’s wall.

3.2. Viscoelastic response of the vein wall
3.2.1. Elastic response
For vein walls such as the ones making up P. polycephalum, the Hamiltonian describing the potential energy
of the vein wall can assume various forms [45, 60–63], corresponding to various effects such as elasticity,
bending, stretching forces, etc. Here, we assume linear Hookean-type feedback for elasticity which is a good
model for thin elastic shells [43, 47, 64]. Note that the following derivation may be done in a similar way for
other Hamiltonians, including e.g. bending terms. In practice, in the limit of small deformations, these should
yield similar contributions to the response and should not modify the result of this work significantly. With
elasticity only, the total external circumferential stresses on the vein wall are balanced by the elastic response

E

(1− ν2)

(a(t)− a0 (t))

a0 (t)
= σtot (6)

where E is Young’s modulus, in Pa, characterizing the wall’s elasticity and ν is the material’s Poisson’s ratio,
which is a number with no units [43, 65]. Here we assumed that the reference radius a0(t) can slowly evolve
in time.

3.2.2. Viscoelastic response
Beyond elasticity, the gel-like material making up the tube wall is best described by a viscoelastic solid [39,
40, 45], and we must add the viscous response to equation (6).

3.2.2.1. Short-time viscoelastic response
Previous models on P. polycephalum aiming to describe the short-time peristaltic response use the Voigt
model for a viscoelastic solid [40, 43, 47] which gives

E

(1− ν2)

(
a(t)− a0

a0
+

ηs
E

1

a0

da(t)

dt

)
= σtot (7)

where ηs is the viscosity of the viscoelastic solid shell, and in these models it is assumed that the reference
state a0 does not evolve, i.e. does not grow or shrink. This model introduces a viscous adaptation time
ts = ηs/E of the material making up the vessel wall, which for P. polycephalum can be calculated to be
typically ts ≃ 1 min [45]. This timescale corresponds to the contraction period T of P. polycephalum, and is
likely related to actin fiber turnover, happening typically on a 1–2 min timescale (as measured e.g. in HeLa
cells [66, 67]).

3.2.2.2. Long-time viscoelastic response
The above model, however, does not reflect long-time adaptation and restructuration of the veins,
corresponding e.g. to several rounds of actin fiber turnover, on timescales much longer than 1–2 min.

To model these longer adaptation mechanisms, a potential strategy is to add a viscous behavior in the
viscoelastic model as presented in figure 5. Investigating different combinations of viscous/elastic
contributions, we have found that adding a Maxwell behavior with another viscosity coefficient ηl — see
figure 5 — is the simplest model which reproduces the intrinsic features of our system. To solve for the
strain/stress relations in this model, it is useful to introduce σs and σl which represent the stresses distributed
on each branch, such that σs +σl = σtot, σs = ηsda/dt and

E
a(t)− a0 (t)

a0 (t)
= ηl

1

a0 (t)

da0 (t)

dt
= σl. (8)

7
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Taking the time derivative of equation (8) recovers a Maxwell law for σl along the bottom branch. This
introduces a timescale for long-time adaptation tl = ηl/E≫ ηs/E. We will see in section 4 how to
incorporate this latter ingredient in the force balance at long time scales. Before pursuing, it is useful,
however, to characterize short-time averages further. The above short-time viscous response equation (7)
suggests to define a short-time averaging

⟨X(t)⟩= 1

ts

ˆ t

0
X(t ′)e−(t−t ′)/tsdt ′ (9)

and we define the short-time averaged vein radius as a0(t)≡ ⟨a(t)⟩. With this definition, one can investigate
long-time adaptation via ⟨

da(t)

dt

⟩
=

a(t)− a(0)e−t/ts − a0 (t)

ts
≃ a(t)− a0 (t)

ts
(10)

where the last equation is obtained by considering we are exploring times t≫ ts. Using equation (8), we
obtain ⟨(

(a(t)− a0 +
ηs
E

da(t)

dt

)⟩
=

ηl
E

da0(t)

dt
. (11)

In general, we expect short timescale variations to be small compared to long timescale variations
|X−⟨X⟩|/⟨X⟩ ≪ 1. This is especially true in P. polycephalum for radius dynamics where radius values
oscillate periodically by about 5 µm over short timescales of 1–2 min while vascular adaptation ranges
typically up to 50 µm on long timescales of 10–30 min [13]. This means we can approximate, for any variable
X and Y, ⟨XY⟩ ≃ ⟨X⟩⟨Y⟩, and ⟨1/X⟩ ≃ 1/⟨X⟩. We, therefore, obtain the following simple relation between the
short-time response and the long-time response:⟨

E

(1− ν2)

(
(a(t)− a0

a0
+

ηs
E

1

a0

da(t)

dt

)⟩
=

ηl
(1− ν2)

1

a0

da0(t)

dt
= ⟨σtot⟩ . (12)

3.3. Enumeration of forces
3.3.1. Hydrodynamic forces
Let Π =−pI+σ be the tensor characterizing hydrodynamic forces per unit area, where p is pressure, σ is
the deviatoric stress tensor and I is the identity matrix. The hydrodynamic forces acting in the radial
direction on the vein’s wall are then

δFhydro = (−δSer) ·Π · er +(δSer) · (−pextI) · er = δS(−Πrr − pext) (13)

where er is the unit vector in the outward radial direction, δS= 2π aδℓ is the infinitesimal surface area of the
vein, and pext is the atmospheric pressure exerted uniformly across the organism on the outer side of vein
walls.

We now calculate the radial components of the tensor Πr... to obtain the hydrodynamic forces
Πrr|r=a =−p+ 2µ

∂vr
∂r

,

Πrz|r=a = µ

(
∂vr
∂z

+
∂vz
∂r

)
.

(14)

Note that we also calculate Πrz|r=a since we will use it later. Within the lubrication approximation, we have
the hierarchy ∂vz

∂r ∼ 1
ϵλ

∂vr
∂r ∼ 1

ϵλ
∂vz
∂z ∼ 1

ϵ2λ

∂vr
∂z and further p∼ µ 1

ϵ2λ

∂vr
∂r . Keeping only highest order terms in ϵλ

yields Πrr|r=a ≃−p

Πrz|r=a ≃ µ
∂vz
∂r

|r=a

. (15)

Using the expression for the flow profile equation (4) we obtain

∂vz
∂r

=+
a(z, t)

2µ

∂p

∂z

r

a(z, t)
(16)

and finally taking its value at the channel boundary we obtain
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Πrr|r=a ≃−p

Πrz|r=a ≃−4µv

a

(17)

where v(z, t) =− a2(z,t)
8µ

∂p
∂z is the cross-sectional average of vz. The Πrz component of the stress corresponds to

the shear stress, which is related to the shear rate τ = 4v̄
a = 4Q

π a3 where Q= π a2v̄ via the dynamic viscosity:
|Πrz|r=a|= µ|τ |.

Geometrically, only the radial hydrodynamic stresses Πrr can contribute to the circumferential
adaptation. We obtain that the resulting hydrodynamic contributions on the vein’s wall are simply related to
the pressure imbalance, in the circumferential direction

σhydro =
a(t)

e(t)
(p− pext) . (18)

We note that larger pressure differences between the hydrostatic pressure p and the atmospheric pressure pext
dilate veins as expected. Importantly, we remark that shear stress has no contribution to the radial
hydrodynamic stresses.

3.3.2. Active forces
We denote σactive the active stress operated by the actomyosin cortex [40, 68]. We assume these active stresses
induce short timescale dynamics that are purely elastic deformations. The short timescale here corresponds
to the period of the peristaltic contractions. A chemical potentially triggers these active forces driving
contractions within the cytoplasm [40, 45, 63, 68]. Here, we assume that the chemicals are initially well
mixed, meaning that the organism has received no localized food or chemical stimulus spatially altering the
chemical balance. Throughout the analysis, we further assume that these compounds remain well mixed. This
allows us to consider that the active forces do not show any significant trend on long timescales, such that

⟨σactive⟩ ≃ const. (19)

where ⟨.⟩ denotes the average over short timescales. We will be more specific as to what enters that constant
later. We consider that σactive is a radial stress that needs to be multiplied by a factor a(t)/e(t) to enter the
circumferential force balance equation (7).

3.3.3. Nonlinear orthogonal feedback forces from shear stress
Shear stress, here denoted as Πrz = σrz, is considered to be the dominating mechanical force for growth
induced by shearing cells in numerous experiments [69, 70]. The importance of shear stress forces for
adaptation dynamics could be explained by mechanosensitive pathways [71] or other chemical pathways that
regulate the dilatation of veins [72, 73]. However, as we are interested in force balance, we must investigate
the contribution of shear stress to forces. Shear stress exerts a force in the longitudinal direction on the vein
wall—as seen in section 3.3.1—and, hence, can not contribute a priori to the radial (or circumferential)
forces that dilate or contract the vein.

However, shearing the actomyosin cortex can lead to a significant orthogonal response, usually termed
normal stress, because of the crosslinked structure of the actomyosin gel [30, 31, 74]. We, here, hypothesize
(and justify below) that this orthogonal response contributes a circumferential extensional stress σgel(σrz)
where σrz =Πrz|r=a is the shear stress at the wall and σgel(σ) has units of stress and depends on shear stress at
the wall, possibly in a nonlinear way, and its order of magnitude is comparable or greater to that of shear
stress [31]. This orthogonal response solves the apparent paradox of how shear stress, via force balance, can
act in the radial direction.

3.3.3.1. How can we understand this orthogonal stress?
Janmey et al [31] explores the normal stress resulting from shearing a variety of biogels that are crosslinked
through semi-flexible or rigid filaments. The gels are sheared between two plates, and experiments identify
an orthogonal response with a ‘negative’ normal stress, meaning that the plates are attracted towards one
another—see figure 6(A). This effect is due to the rigid filaments crosslinking the gels that resist shearing by
bringing fibers closer to one another, creating the normal stress [30, 31].

3.3.3.2. Could the P. polycephalum cortex also exhibit an orthogonal response?
The negative normal stress is seen across many forms of biogels [74, 75] and is confirmed by minimal
numerical models [76] and nonlinear elastic theory [74]. Most experiments on cross-linked filaments exhibit
a negative normal stress response, while a few of them yield a positive stress response [31]. For non-active
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Figure 6. Shear stress leads to radial expansion. (A) Experimental setting of [31] where two plates (dark blue) are shearing a
crosslinked gel and a negative normal stress response is observed, that tends to bring the plates together. By symmetry, shear
vanishes at the midplane. (B) Analogous effect in a tubular geometry, with a longitudinal view along the vein, where the gel makes
up the vein walls. Shear stress from cytoplasmic streaming results in negative compression of the outer actin gel, which, since
there is no resistance on the outer wall, leads to an expansion of the vein radius.

interconnected actin filaments the response is indeed negative. References [30, 31] have further identified
that the orthogonal negative response is likely due to the material’s rigid crosslinks. Crosslinks, including
passive crosslinks, are present in the active actomyosin gel; hence, it is a valid assumption that such negative
normal stress would be maintained in gels with an active component such as the one making up the outer
wall of P. polycephalum.

3.3.3.3. How does the orthogonal gel response translate to a vascular geometry?
In our vascular setting with fluid enclosed by an actin cortex gel, the vein wall is sheared between the fluid-gel
and the air-gel boundaries; see figure 6(B). Compared to the geometry of the shearing experiments of [31],
here, the largest shearing component is located on the inner wall of the vein, such that the negative normal
stress should result in compression/thinning of the vein’s wall. However, compared to the geometry of the
shearing experiments, which includes a 0-shear, 0-motion line, here, there is no resistance on the air-gel side,
and the gel can relax stress by expanding on the free-air side. Effectively this means that the inner vein radius
increases, with σgel(σ)> 0. The normal stress increases with increasing shear [31], here resulting in further
dilation—consistent with the assumptions of many previous theoretical works [3, 20–23, 25–27]. We hope to
motivate further models in the cylindrical geometry to investigate this radial, normal stress response.

3.3.3.4. What happens to the wall thickness?
While one could design a force balance approach accounting for both the relaxation of the inner fluid radius
a(t) and the gel thickness e(t), here, we simply assume both evolve in tandem e∝ a, as corroborated by
experimental data (see figure 4). Again, we hope to motivate further advanced models, which would account
for both variations, as well as highly viscous flow within the gel. Note that the vein’s fluid and wall mass are
not necessarily conserved during the adaptation process, but this is not contradictory. Indeed, fluid mass is
brought in and out from other parts of the network, and wall structure is continuously deformed over long
timescales, corresponding to e.g. several rounds of actin fiber turnover and rearrangements [66, 67].

3.3.3.5. What is the functional dependence of the normal stress on the shear stress?
Nonlinear elasticity theory can predict the normal stress response due to shear stress [74, 76–80]. The
magnitude of the normal stress response depends on the mechanical properties of the gel and the
crosslinking filaments. Furthermore, the normal response scales linearly or quadratically with the shear
rate [74, 76, 79]. Quadratic models accurately reproduce the negative normal stresses observed in [31]. We,
therefore, assume in the following that the normal stress can be written

σgel (σ) =
a(t)

e(t)

1

σc
σ2, (20)

where σc > 0 is a characteristic shear stress quantifying the responsiveness of the gel wall material. Other
functional forms, that are monotonically increasing with σ> 0 and that verify σgel(σ = 0) = 0, such as
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σgel(σ) = |σ| would not change the main results of this work. Here, only the orthogonal response is essential
to derive an adaptation rule from force balance.

3.3.3.6. What timescales are involved in the normal response?
Finally, we need to specify for the orthogonal response what timescales are involved, precisely, whether the
shear stress σrz contributing to the normal response corresponds to short, elastic, or long, viscous, timescale
contributions. In P. polycephalum, we observe in experiments that vein adaptation, compared to the input
shear signal, happens with a time delay [13]. This time delay is typically at least of the order of a contraction
period. Hence, the time delay washes out short timescale stress contributions, and only the long timescale
dependence of shear is relevant. More generally, we may expect the gel’s orthogonal response to occur with a
timescale corresponding to actin fiber rearrangements. Therefore the orthogonal response varies only over
long timescales. In the following, we prefer to express equations in terms of the shear rate τ = σrz/µ such
that we may rewrite the radial orthogonal gel response as

σgel (µ⟨τ⟩) =
a(t)

e(t)
µ
⟨τ⟩2

τc
, (21)

where we included the fact that the relevant shear is over long timescales. We also define τc = σc/µ as the
associated characteristic shear rate.

3.4. Force balance on a vein segment
Gathering all stresses as outlined above, we can now write the balance of stresses acting on a vein ring-like
section of length δℓ as

σtot =
E

(1− ν2)

(
a(t)− a0

a0
+

ηs
E

1

a0

da(t)

dt

)
= σhydro +

a(t)

e(t)
σactive +σgel. (22)

Using the expressions derived above for the forces, equations (18) and (21), we obtain

E

(1− ν2)

(
a(t)− a0

a0
+

ηs
E

1

a0

da(t)

dt

)
=

a(t)

e(t)
(p− pext)+

a(t)

e(t)
σactive +

a(t)

e(t)
µ
⟨τ⟩2

τc
. (23)

Note that we neglected any fluctuating forces in this simple force balance, especially as they would eventually
be averaged out in the long timescale we focus on here. In addition, we still have the long-time response
dictated through equation (8).

4. Long time adaptationmodel

We now aim to simplify the force balance equation (23). To do so, we use our timescale separation
assumption: some variables demonstrate either long timescale dynamics or short timescale dynamics in line
with radius dynamics that have both short and long timescales. Long timescale dependencies will, from here
on, be written as ⟨X⟩(t) for any variable X.

4.1. Short timescales
We first focus on short timescales. To observe short timescale dynamics, we can take the short-time average
of equation (23), use the long-time response of the system equation (12), and subtract it back from
equation (23). Reordering terms we obtain an equation characterizing short-timescale dynamics

d(a(t)− a0 (t))

dt
= a0 (t)

1− ν2

η

a(t)

e(t)

(
(p− pext)−

E

1− ν2
(a− a0 (t))

a0 (t)

e(t)

a(t)
+σactive +µ

⟨τ⟩2

τc

)
−
⟨
a0 (t)

1− ν2

ηl

a(t)

e(t)

(
(p− pext)+σactive +µ

⟨τ⟩2

τc

)⟩
.

(24)

In a single tube without peristaltic pumping, a(t)≃ a0(t) and equation (24) allows us to characterize the
pressure in the system. For example, this would be a necessary equation to completely solve the fluid flow
problem since we have a priori four unknowns, vr, vz, p, and a, and the Navier–Stokes equations only give
three equations. Equation (24) relating pressure to circumferential stress and active stresses (or variants) has
been used by several authors [45, 63, 81–85] (for example see equation (1c) of [82] or equation (3) in [81]).
Equation (24) together with the hydrodynamic equations (4) and (5), now form a complete set of equations
to calculate flows and contractions at short timescales. Our interest goes beyond, to the long timescales,
where significant vein adaptation happens.
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Figure 7. Averaged shear rate (A)–(C) and pressure (B)–(D) in a specimen corresponding to the full network presented in
figure 1. The fields are calculated using data from image analysis that provides vein contractions, as well as conservation of mass
and Kirchhoff ’s laws. The results are presented at the initial stage (A)–(B) and the final stage of the experiment, 54 min later
(C)–(D). In the final stage, veins that have vanished are represented in gray. More details on calculation methods may be found in
[13]. Images are adapted with permission from [13].

4.2. Long timescales
Let us now return to the full force balance equation (23) and average dynamics over the short timescales, use
equation (12), to obtain long timescale adaptation,

da0 (t)

dt
= a0 (t)

1− ν2

η

a0 (t)

⟨e(t)⟩

(
⟨(p− pext)+σactive⟩+µ

⟨τ⟩2

τc

)
. (25)

We now seek possible simplifications on the right-hand side of equation (25).
Firstly, we can consider that ⟨(p− pext)⟩ changes only marginally over long times. Generally, we expect

that local pressure can not vary too much at the risk of damaging tissue. In P. polycephalum we can verify this
assumption by observing calculated pressure fields. In figures 7(B) and (D), we present numerically
calculated pressure fields in each vein from network-wide vein contraction data for the specimen shown in
figure 1, at the beginning of the experiment and after a significant adaptation time. The details of how the
pressure field is calculated are reported in [13]. We find that the pressure field evolves only over less than an
order of magnitude over the entire duration of the experiment of an hour. In comparison, shear can vary
over three orders of magnitude in the same time frame; see figures 7(A) and (C). Our maps also show that
the pressure p is relatively uniform across the network and does not depend on the radius ⟨a⟩ of a vein,
unlike shear rate. We can therefore consider that ⟨(p− pext)⟩ smoothly evolves across the network and only
changes over ‘very’ long timescales, when significant adaptation happens for many veins in the network—see
the right-most panel of figure 3.

Secondly, as we mentioned earlier, ⟨σactive⟩ is a constant stress related to the active consumption of energy
for wall contractility. Typically, as this stress characterizes the force per unit wall area necessary for
contraction, we do not expect it to depend on ⟨a⟩. Importantly though, this active stress is related to energy
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consumption and hence constantly opposes vein growth; mathematically ⟨σactive⟩< 0, it can be thought of as
the force analog of the metabolic cost energy π bLa2 in Murray’s derivation in equation (1), see the
introduction. We, therefore, expect this component to determine the global sign of ⟨(p− pext)+σactive⟩ such
that we can write ⟨(p− pext)+σactive⟩=−µτtarget where τtarget > 0 is a typical target shear rate, characterizing
energy consumption, corrected by hydrostatic pressure, that can smoothly evolve across the network and
over long timescales, longer than the timescale for local vascular adaptation. Under these conditions
equation (25) simplifies to

da0 (t)

dt
= a0 (t)

1− ν2

ηl

1

ϵe

(
µ
⟨τ⟩2

τc
−µτtarget

)
, (26)

To further simplify this expression, we now introduce the local target shear rate τ0 =
√
τcτtarget and

tadapt =
1

1− ν2
ϵe

ηl
µτtarget

(27)

as characteristic adaptation timescale for vascular rearrangement.
We, thus, rewrite equation (26) in a more compact way and obtain the adaptation rule

da0 (t)

dt
=

a0 (t)

tadapt

(
⟨τ⟩2

τ 20
− 1

)
(28)

as the main result of this work. Note, equation (28) resembles previous phenomenological approaches [3, 8,
18, 20–27] yet, here, arises from force balance on the vein wall.

It is relevant to close our analysis and determine whether the adaptation timescale tadapt gives the correct
adaptation timescale in orders of magnitude. For an order of magnitude estimation, we can neglect Poisson’s
ratio ν; we assume µτtarget is comparable to pressure differences across the organism
µτtarget ≃ 102µ 1/s≃ 10−1 Pa. The long time viscous adaptation ηl ≃ 10− 100 ηs ≃ 103 − 104 Pa · s Using in
addition ϵe ≃ 0.1, we obtain tadapt ≃ 103 − 104 s. This corresponds indeed to the order of magnitude found
from fits of equation (28) to adaptation data in [86].

5. Discussion

In this work, we have established a physical derivation based on force balance to justify the broadly used
adaptation rule

1

a0

da0
dt

=
1

tadapt
(f(τ)− f(τ0)) . (29)

For our case study in P. polycephalum, where fluid flow is encapsulated by crosslinked fibers making up a gel,
we have provided reasoning to support that f(τ) = ⟨τ⟩2/τ 20 , and this scaling is in agreement with
experimental data [31]. We recall that a is the radius of a vein, t time, tadapt a timescale characterizing
adaptation, τ shear rate, and τ 0 a steady state shear rate. The notation ⟨.⟩ averages out short timescale, elastic
deformations, such that the law in equation (29) characterizes long timescale deformations.

Our force-balance approach is based on fluid flow physics and on the detailed enumeration and
investigation of forces at play on the vessel wall, namely: hydrodynamic forces that are pressure and normal
stress, conservative forces such as circumferential stress, active stresses, orthogonal feedback from shear
stress, and friction forces. We have proposed a potential mechanism where over long timescales
corresponding to viscous deformations, the dominant forces are orthogonal feedback forces from shear
stress. These are due to a unique feature of crosslinked fiber networks making up the actomyosin cortex.
When the fibers are sheared, the crosslinks between them bring them closer together, resulting in a normal
response under shear. This response tends to dilate vessels when the shear rate increases.

We now discuss our model’s validity relative to other works and other systems beyond P. polycephalum,
specific insight on equation (29), and possible extensions.

5.1. Validity of the derivation with respect to existing theories
The result in equation (28) has the same mathematical shape as the phenomenological equation (2) used in
many prior works [3, 8, 18, 20–27]. It is therefore consistent with these phenomenological laws while
bringing physical validation and insight. Our result is also consistent with Murray’s steady state assumption.
In fact, the steady state of equation (28) corresponds to a constant average shear rate in the vein ⟨τ⟩= τ0.
Compared to existing theories where short timescale elastic deformation of veins is not discussed, here we
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provide a distinction between viscous and elastic deformations, and our adaptation rule corresponds to
viscous, long time, deformations. The relevant or sensed shear rate for adaptation feedback is the long
timescale one, ⟨τ⟩, where short-lived elastic contributions are averaged out.

5.2. Applicability of the derivation in other vasculature systems
While our derivation is set in the context of P. polycephalum, most of the assumptions we make are standard
in vasculature studies [41–45, 48], as we also recapitulate in table 1. The main original assumption is the
feedback mechanism for shear on adaptation, originating from the orthogonal response of the cross-linked
gel, discussed in section 3.3.3. Such an orthogonal response is quite likely in many soft bio-gels [30, 31] and
therefore quite likely to occur in different settings. For endothelial cells lining animal vasculature the cell
reorientation upon shear along the tube thereby thinining tube diameter might similarly result in an
orthogonal response [87].

5.3. Functional dependence of the feedback on shear rate τ

In our derivation, we obtain that the adaptation function is quadratic, f(τ) = ⟨τ⟩2
τ 2
0
. This is similar to the

functional form used in [3], where the quadratic dependence was obtained phenomenologically from
Murray’s law. However, the origin of the quadratic dependence lies in the detailed characteristics of the
orthogonal response of the gel, namely f(τ)∼ σgel(µ⟨τ⟩). Hence, different mechanical properties of the gel
making up a vein wall could yield different functional forms [76]. Again, we argue that here it is not so much
the exact functional dependence that is critical to obtain an adaptation model in the form of equation (2).
Rather, the fact that the gel making up the wall exhibits an orthogonal response is key in the force balance
approach to obtain radius adaptation from variable shear rate. As mentioned in the text, such orthogonal
feedback can be studied more rigorously with nonlinear elastic theories or numerics [74, 76], and we hope to
motivate further work in cylindrical geometry.

5.4. New insights from the force balance perspective
The advantage of the force balance approach is that we can now give further physical meaning to the
quantities tadapt and τ 0 in the adaptation law equation (2).

The constant τ0 ∼−⟨σactive⟩/µ−⟨(p− pext)⟩/µ corresponds to the steady state shear rate in Murray’s
law. It can, thus, be related to the typical local energy expense to sustain a vein

√
b/µ, where we recall that b

is a local metabolic constant per unit volume and µ fluid viscosity. This contribution corresponds in our
derivation to the active stress required to sustain peristaltic contractions−⟨σactive⟩/µ∼

√
b/µ. Here, we

bring further insight complementing Murray’s derivation, as our adaptation dynamics equation (25) hints
that τ0, or the metabolic cost, also depends on local pressure (⟨p− pext⟩). Hence, the local target shear rate τ 0
is not just an intrinsic property of the system. Instead, it characterizes minimal energy expense at a given
point in the network and smoothly and slowly varies across the network. Interestingly, our approach allows
us to integrate the role of hydrostatic pressure in adaptation: when pressure is higher, the constant τ 0 is
decreased, favoring veins with ab initio lower shear rate ⟨τ⟩ to grow, in line with the physical intuition that
high hydrostatic pressures may drive vein dilation.

We can also draw insight on the adaptation timescale tadapt ∼ ηl/µτ0 as it includes the parameters of the
model. If the local target shear rate τ 0 is small, corresponding to a lower energy consumption level or larger
local pressure that helps to keep the vein open, then tadapt is long, and the vein is not prone to fast vascular
adaptation. Reversely, if τ 0 is large, vein adaptation can happen fast. Furthermore, the adaptation is slow
coherently if the resistance to viscous change ηl is large.

Finally, it is important to note that tadapt and τ 0 form two independent parameters characterizing the
adaptation dynamics in equation (28), and that both vary smoothly across the network. In fact, the
parameters that define tadapt and τ 0, namely ηl, µ, and τ c depend on mechanical and fluidic properties that
vary across an individual organism as a function of both vein maturation and size [39, 57, 58, 88] as well as
integrated exposure to light [89]. The parameters ηl, µ and τ c also vary among different specimens due to the
responsiveness to ambient conditions, such as humidity [90, 91], light conditions [90, 92–94] and
temperature [95, 96]. For example, the cytoplasm viscosity µ can vary depending on the local content of salt
concentration or dispersed particles inside veins [58]. Furthermore, both ηl and τ c are related to the cortex
mechanical properties, whose structure varies both within a specimen and over time [39, 88].

5.5. Comments on extensions of the model and conclusion
In our adaptation model, we consider a section of the vein that communicates only via flow with the rest of
the network. A more detailed model could describe, for example, the dynamics of the retraction phase of a
vein from its dangling end. As these are typically short events, achieved within less than a contraction period,
compared to vein dynamics such as shrinking or growing that can extend over several contraction periods,
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we chose to ignore them in our long timescale adaptation model. Finally, other feedback mechanisms could
be explored in more detail, such as fiber resistance to deformation [97], wall thickness adaptation [26],
including the porosity of the wall [32] and testing the impact of poro-elasticity [98], or finally in time
including energy or oxygen transport [27].

In conclusion, the model derived from force balance incorporates as few assumptions as possible to arrive
at the adaptation rule equation (2). Using the quadratic dependence of the adaptation function
f(τ) = ⟨τ⟩2/τ 20 , we have shown in our accompanying work [13], that even these simple assumptions are
sufficient to reproduce a variety of adaptation dynamics that are observed experimentally. Furthermore,
although our force balance derivation and subsequent experimental investigation were adapted to the model
organism P. polycephalum, the underlying physical principles of fluid flow physics and mechanical response
are universal. Hence, we believe adaptation models based on force balance approaches are relevant to study
vascular adaptation across further flow networks in plants and animals.

Data availability statement

All data that support the findings of this study are included within the article.

Acknowledgments

The authors are indebted to Charles Puelz for enlightening discussions on force balance in veins and Emilie
Verneuil and Nicolas Bain for discussions on the orthogonal response of sheared gels. They would also like to
thank Leonie Bastin and Felix Bäuerle for interesting discussions on P. polycephalum. S M was supported in
part by the MRSEC Program of the National Science Foundation under Award Number DMR-1420073. This
work was supported by the Max Planck Society and has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant
Agreement No. 947630, FlowMem).

ORCID iDs

Sophie Marbach https://orcid.org/0000-0002-2427-2065
Karen Alim https://orcid.org/0000-0002-2527-5831

References

[1] Lucitti J L, Jones E A V, Huang C, Chen J, Fraser S E and Dickinson M E 2007 Development 134 3317–26
[2] Chen Q, Jiang L, Li C, Hu D, Bu J-W, Cai D, Du J-L and Krasnow M 2012 PLoS Biol. 10 e1001374
[3] Hu D and Cai D 2013 Phys. Rev. Lett. 111 138701
[4] Kurz H 2000 J. Neuro-Oncol. 50 17–35
[5] Hove J R, Köster R W, Forouhar A S, Acevedo-Bolton G, Fraser S E and Gharib M 2003 Nature 421 172–7
[6] Zhou Y, Kassab G S and Molloi S 1999 Phys. Med. Biol. 44 2929
[7] Corson F, Adda-Bedia M and Boudaoud A 2009 J. Theor. Biol. 259 440–8
[8] Ronellenfitsch H and Katifori E 2016 Phys. Rev. Lett. 117 138301
[9] Tero A, Takagi S, Saigusa T, Ito K, Bebber D P, Fricker M D, Yumiki K, Kobayashi R and Nakagaki T 2010 Science 327 439–42
[10] Alim K, Amselem G, Peaudecerf F, Brenner M P and Pringle A 2013 Proc. Natl Acad. Sci. 110 13306–11
[11] Meyer E P, Ulmann-Schuler A, Staufenbiel M and Krucker T 2008 Proc. Natl Acad. Sci. USA 105 3587–92
[12] Pries A R, Cornelissen A J M, Sloot A A, Hinkeldey M, Dreher M R, Höpfner M, Dewhirst MW, Secomb TW and Papin J A 2009

PLoS Comput. Biol. 5 e1000394
[13] Marbach S, Ziethen N, Bastin L, Bäuerle F K and Alim K 2023 eLife 12 e78100
[14] Murray C D 1926 Proc. Natl Acad. Sci. USA 12 207
[15] Kassab G S 2006 Am. J. Physiol. Heart Circ. Physiol. 290H894–903
[16] West G B, Brown J H and Enquist B J 1997 Science 276 122–6
[17] McCulloh K A, Sperry J S and Adler F R 2003 Nature 421 939–42
[18] Akita D, Kunita I, Fricker M D, Kuroda S, Sato K and Nakagaki T 2016 J. Phys. D: Appl. Phys. 50 024001
[19] Fricker M D, Akita D, Heaton L L, Jones N, Obara B and Nakagaki T 2017 J. Phys. D: Appl. Phys. 50 254005
[20] Tero A, Kobayashi R and Nakagaki T 2007 J. Theor. Biol. 244 553–64
[21] Taber L A 1998 J. Biomech. Eng. 120 348–54
[22] Hacking W, VanBavel E and Spaan J 1996 Am. J. Physiol. Heart Circ. Physiol. 270H364–75
[23] Hu D, Cai D and Rangan A V 2012 PLoS One 7 e45444
[24] Baumgarten W and Hauser M J B 2013 Phys. Biol. 10 026003
[25] Pries A, Secomb T and Gaehtgens P 1998 Am. J. Physiol. Heart Circ. Physiol. 275H349–60
[26] Pries A R, Reglin B and Secomb TW 2005 Hypertension 46 725–31
[27] Secomb TW, Alberding J P, Hsu R, Dewhirst MW and Pries A R 2013 PLoS Comput. Biol. 9 e1002983
[28] Bonifaci V 2017 J. Math. Biol. 74 567–81

15

https://orcid.org/0000-0002-2427-2065
https://orcid.org/0000-0002-2427-2065
https://orcid.org/0000-0002-2527-5831
https://orcid.org/0000-0002-2527-5831
https://doi.org/10.1242/dev.02883
https://doi.org/10.1242/dev.02883
https://doi.org/10.1371/journal.pbio.1001374
https://doi.org/10.1371/journal.pbio.1001374
https://doi.org/10.1103/PhysRevLett.111.138701
https://doi.org/10.1103/PhysRevLett.111.138701
https://doi.org/10.1023/A:1006485716743
https://doi.org/10.1023/A:1006485716743
https://doi.org/10.1038/nature01282
https://doi.org/10.1038/nature01282
https://doi.org/10.1088/0031-9155/44/12/306
https://doi.org/10.1088/0031-9155/44/12/306
https://doi.org/10.1016/j.jtbi.2009.05.002
https://doi.org/10.1016/j.jtbi.2009.05.002
https://doi.org/10.1103/PhysRevLett.117.138301
https://doi.org/10.1103/PhysRevLett.117.138301
https://doi.org/10.1126/science.1177894
https://doi.org/10.1126/science.1177894
https://doi.org/10.1073/pnas.1305049110
https://doi.org/10.1073/pnas.1305049110
https://doi.org/10.1073/pnas.0709788105
https://doi.org/10.1073/pnas.0709788105
https://doi.org/10.1371/journal.pcbi.1000394
https://doi.org/10.1371/journal.pcbi.1000394
https://doi.org/10.7554/eLife.78100
https://doi.org/10.7554/eLife.78100
https://doi.org/10.1073/pnas.12.3.207
https://doi.org/10.1073/pnas.12.3.207
https://doi.org/10.1152/ajpheart.00579.2005
https://doi.org/10.1152/ajpheart.00579.2005
https://doi.org/10.1126/science.276.5309.122
https://doi.org/10.1126/science.276.5309.122
https://doi.org/10.1038/nature01444
https://doi.org/10.1038/nature01444
https://doi.org/10.1088/1361-6463/50/2/024001
https://doi.org/10.1088/1361-6463/50/2/024001
https://doi.org/10.1088/1361-6463/aa72b9
https://doi.org/10.1088/1361-6463/aa72b9
https://doi.org/10.1016/j.jtbi.2006.07.015
https://doi.org/10.1016/j.jtbi.2006.07.015
https://doi.org/10.1115/1.2798001
https://doi.org/10.1115/1.2798001
https://doi.org/10.1152/ajpheart.1996.270.1.H364
https://doi.org/10.1152/ajpheart.1996.270.1.H364
https://doi.org/10.1371/journal.pone.0045444
https://doi.org/10.1371/journal.pone.0045444
https://doi.org/10.1088/1478-3975/10/2/026003
https://doi.org/10.1088/1478-3975/10/2/026003
https://doi.org/10.1152/ajpheart.1998.275.2.H349
https://doi.org/10.1152/ajpheart.1998.275.2.H349
https://doi.org/10.1161/01.HYP.0000184428.16429.be
https://doi.org/10.1161/01.HYP.0000184428.16429.be
https://doi.org/10.1371/journal.pcbi.1002983
https://doi.org/10.1371/journal.pcbi.1002983
https://doi.org/10.1007/s00285-016-1036-y
https://doi.org/10.1007/s00285-016-1036-y


New J. Phys. 25 (2023) 123052 S Marbach et al

[29] Bonifaci V, Mehlhorn K and Varma G 2012 J. Theor. Biol. 309 121–33
[30] Gardel M L, Kasza K E, Brangwynne C P, Liu J and Weitz D A 2008 Mechanical response of cytoskeletal networksMethods in Cell

Biology vol 89 (Elsevier) ch 19, pp 487–519
[31] Janmey P A, McCormick M E, Rammensee S, Leight J L, Georges P C and MacKintosh F C 2007 Nat. Mater. 6 48–51
[32] Wohlfarth-Bottermann K 1974 J. Cell Sci. 16 23–37
[33] Kamiya N 1981 Annu. Rev. Plant Physiol. 32 205–36
[34] Stewart P A and Stewart B T 1959 Exp. Cell Res. 17 44–58
[35] Isenberg G and Wohlfarth-Bottermann K 1976 Cell Tissue Res. 173 495–528
[36] Kamiya N 1950 Cytologia 15 183–93
[37] Bykov A V, Priezzhev A V, Lauri J and Myllylä R 2009 Doppler OCT imaging of cytoplasm shuttle flow in Physarum polycephalum J.

Biophoton. 2 540–7
[38] Alim K 2018 Phil. Trans. R. Soc. B 373 20170112
[39] Fessel A, Oettmeier C, Wechsler K and Döbereiner H-G 2017 J. Phys. D: Appl. Phys. 51 024005
[40] Alonso S, Radszuweit M, Engel H and Bär M 2017 J. Phys. D: Appl. Phys. 50 434004
[41] Bertaglia G, Caleffi V and Valiani A 2020 Comput. Methods Appl. Mech. Eng. 360 112772
[42] Mitsotakis D, Dutykh D, Li Q and Peach E 2019Wave Motion 90 139–51
[43] Bessems D, Giannopapa C G, Rutten M CM and van de Vosse F N 2008 J. Biomech. 41 284–91
[44] Valdez-Jasso D, Haider M A, Banks H, Santana D B, Germán Y Z, Armentano R L and Olufsen M S 2008 IEEE Trans. Biomed. Eng.

56 210–9
[45] Julien J-D and Alim K 2018 Proc. Natl Acad. Sci. 115 10612–7
[46] Bar-Sinai Y, Julien J-D, Sharon E, Armon S, Nakayama N, Adda-Bedia M, Boudaoud A and Prusinkiewicz P 2016 PLoS Comput.

Biol. 12 e1004819
[47] Anand V and Christov I C 2020 Phys. Fluids 32 112014
[48] Jensen K H, Berg-Sørensen K, Bruus H, Holbrook N M, Liesche J, Schulz A, Zwieniecki M A and Bohr T 2016 Rev. Mod. Phys.

88 035007
[49] Ku D N 1997 Annu. Rev. Fluid Mech. 29 399–434
[50] Fasano A, Farina A and Caggiati A 2017 Rev. Vascular Med. 8 1–4
[51] Sack L and Holbrook N M 2006 Annu. Rev. Plant Biol. 57 361–81
[52] Sankar D, Jaafar N A and Yatim Y 2016 Glob. J. Pure Appl. Math. 12 1337 (available at: www.google.com/url?sa=t&rct=j&q=&

esrc=s&source=web&cd=&ved=2ahUKEwie8-eUj6GDAxUdQaQEHfrcBqIQFnoECA8QAQ&url=https%3A%2F%2Fwww.
ripublication.com%2Fgjpam16%2Fgjpamv12n2_15.pdf&usg=AOvVaw1onG3LTr8iqum32BrsOxi1&opi=89978449)

[53] Feng J J and Young Y-N 2020 Phys. Rev. Fluids 5 124304
[54] Marbach S, Dean D S and Bocquet L 2018 Nat. Phys. 14 1108–13
[55] Grün G, Mecke K and Rauscher M 2006 J. Stat. Phys. 122 1261–91
[56] Li M and Brasseur J G 1993 J. Fluid Mech. 248 129–51
[57] Swaminathan R, Hoang C P and Verkman A 1997 Biophys. J. 72 1900–7
[58] Puchkov E 2013 Biochem. (Mosc.) Suppl. A: Membr. Cell Biol. 7 270–9
[59] Womersley J R 1955 London, Edinburgh Dublin Phil. Mag. J. Sci. 46 199–221
[60] Olufsen M S 1999 Am. J. Physiol. Heart Circ. Physiol. 276H257–68
[61] Storm C, Pastore J J, MacKintosh F C, Lubensky T C and Janmey P A 2005 Nature 435 191–4
[62] Barthes-Biesel D 2016 Annu. Rev. Fluid Mech. 48 25–52
[63] Alim K, Andrew N, Pringle A and Brenner M P 2017 Proc. Natl Acad. Sci. 114 5136–41
[64] Kraus H 1967 Thin Elastic Shells: An Introduction to the Theoretical Foundations and the Analysis of Their Static and Dynamic

Behavior (Wiley)
[65] Takagi D and Balmforth N 2011 J. Fluid Mech. 672 196–218
[66] Salbreux G, Charras G and Paluch E 2012 Trends Cell Biol. 22 536–45
[67] Fischer-Friedrich E, Toyoda Y, Cattin C J, Müller D J, Hyman A A and Jülicher F 2016 Biophys. J. 111 589–600
[68] Radszuweit M, Alonso S, Engel H and Bär M 2013 Phys. Rev. Lett. 110 138102
[69] Hoefer I E, den Adel B and Daemen M J 2013 Cardiovascular Res. 99 276–83
[70] Koller A, Sun D and Kaley G 1993 Circ. Res. 72 1276–84
[71] Fernandes D C, Araujo T L, Laurindo F R and Tanaka L Y 2018 Hemodynamic forces in the endothelium: from

mechanotransduction to implications on development of atherosclerosis Endothelium and Cardiovascular Diseases (Elsevier)
pp 85–95

[72] Lu D and Kassab G S 2011 J. R. Soc. Interface 8 1379–85
[73] Godbole A S, Lu X, Guo X and Kassab G S 2009 Am. J. Physiol. Heart Circ. Physiol. 296H152–8
[74] Vahabi M, Vos B E, De Cagny H C G, Bonn D, Koenderink G H and MacKintosh F 2018 Phys. Rev. E 97 032418
[75] Kang H, Wen Q, Janmey P A, Tang J X, Conti E and MacKintosh F C 2009 J. Phys. Chem. B 113 3799–805
[76] Conti E and MacKintosh F C 2009 Phys. Rev. Lett. 102 088102
[77] Horgan C O and Murphy J G 2011 J. Elast. 104 343–55
[78] Unterberger M J, Schmoller K M, Bausch A R and Holzapfel G A 2013 J. Mech. Behav. Biomed. Mater. 22 95–114
[79] Holzapfel G A, Unterberger M J and Ogden R W 2014 J. Mech. Behav. Biomed. Mater. 38 78–90
[80] Horgan C and Murphy J 2017 Soft Matter 13 4916–23
[81] Shapiro A H 1977 J. Biomech. Eng. 99 126–47
[82] Grotberg J B and Jensen O E 2004 Annu. Rev. Fluid Mech. 36 121–47
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