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Driven by physical questions pertaining to quantifying particle dynamics, microscopy can now resolve
complex systems at the single-particle level, from cellular organisms to individual ions. Yet, available analysis
techniques face challenges reconstructing trajectories in dense and heterogeneous systems where accurately
labeling particles is difficult. Furthermore, the inescapable finite field of view of experiments hinders the
measurement of collective effects. Inspired by Smoluchowski, we introduce a broadly applicable analysis
technique that probes dynamics of interacting particle suspensions based on a remarkably simple principle:
counting particles in finite observation boxes. Using colloidal experiments, advanced simulations, and theory,
we first demonstrate that statistical properties of fluctuating counts can be used to determine self-diffusion
coefficients, so alleviating the hurdles associated with trajectory reconstruction. We also provide a recipe for
practically extracting the diffusion coefficient from experimental data at variable particle densities, which is
sensitive to steric and hydrodynamic interactions. Remarkably, by increasing the observation box size,
counting naturally enables the study of collective dynamics in dense suspensions. Using our novel analysis of
particle counts, we uncover a surprising enhancement of collective behavior due to hydrodynamics as well as
a new length scale which can be connected with hyperuniform structure. Our counting framework, the
“countoscope,” thus enables efficient measurements of self and collective dynamics in dense suspensions and
opens the way to quantifying dynamics and identifying novel physical mechanisms in diverse complex
systems where single particles can be resolved.
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I. INTRODUCTION

A century ago, Smoluchowski proposed that diffusion
coefficients in particle suspensions could be measured by
probing correlations in the number of particles within the
observation field of a microscope—a number that fluc-
tuates with time as particles stochastically jump in and out
of the field due to Brownian motion [1–5]. The simplicity
of this idea made it experimentally accessible, and, within a

few years, Smoluchowski’s theory was validated exper-
imentally for dilute systems [6,7].
Since then, widespread interest in particulate suspen-

sions has motivated the development of many techniques to
measure diffusion coefficients [8]. Broadly, these can be
split into two categories: microscopy, in which individual
particle positions can be resolved, and spectroscopy tech-
niques, such as dynamic light scattering [9], fluorescence
correlation spectroscopy [10], and differential dynamic
microscopy [11], where resolution is usually insufficient
to identify individual particles. Spectroscopy implicitly
relies on Smoluchowski’s idea by correlating the light
intensity received within the field of view, or at different
length scales in Fourier space, as a proxy for number
fluctuations. Yet, such spectroscopy methods require
detailed models to unambiguously map intensity to particle
properties, which are hard to define in dense systems with
multiple scattering [12,13].
Microscopy gives direct access to particle configurations

but, unlike spectroscopy, typically does not exploit density

*These authors contributed equally to this work.
†Contact author: sophie.marbach@cnrs.fr
‡Contact author: bsprinkl@mines.edu
§Contact author: alice.thorneywork@chem.ox.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 14, 041016 (2024)
Featured in Physics

2160-3308=24=14(4)=041016(14) 041016-1 Published by the American Physical Society

https://orcid.org/0000-0002-0486-3204
https://orcid.org/0000-0002-2427-2065
https://ror.org/02en5vm52
https://ror.org/037tm7f56
https://ror.org/04raf6v53
https://ror.org/013meh722
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.14.041016&domain=pdf&date_stamp=2024-10-18
https://doi.org/10.1103/PhysRevX.14.041016
https://doi.org/10.1103/PhysRevX.14.041016
https://doi.org/10.1103/PhysRevX.14.041016
https://doi.org/10.1103/PhysRevX.14.041016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


fluctuations to probe dynamics. Instead, particle positions
are found, and a linking algorithm is used to connect
positions into trajectories, xðtÞ [14]. As proposed by the
seminal works of Einstein and Perrin [15,16], the diffusion
coefficient D0 is then inferred by computing the particle’s
mean-square displacement from the trajectories, since
hΔx2ðtÞi ¼ h½xðtÞ − xð0Þ�2i ¼ 2D0t. As such, the concept
of explicitly counting particles as an experimental analysis
tool, as introduced by Smoluchowski, is largely forgotten.
The power of this approach for analysis in modern
microscopy settings is, thus, unexplored.
Our ability to resolve single-particle behavior in complex

systems has improved dramatically in recent years, with
superresolution and interferometric scattering microscopy
now resolving individual molecular dynamics [17,18]. In
complex cases such as these, while particle positions can be
resolved, linking algorithms face challenges. For instance,
linking algorithms cannot cope with particles appearing and
disappearing due to their diffusion outside of the field of view,
bleaching, cellular division, or substantial drift [19–21]. In
addition, linking becomes ambiguous in dense or hetero-
geneous systems, as it relies on distance cutoffs [13,19,22].
Single-particle microscopy is, therefore, poised for new
analysis techniques to probe dynamics [21,23,24].
Here, we introduce a technique, the “countoscope,”

which exploits fluctuating particle counts in finite obser-
vation volumes to infer dynamic properties for interacting
particle suspensions (Fig. 1). We use varying observation
box sizes, going beyond Smoluchowski’s initial idea, to
explore different dynamical effects in many-body interact-
ing systems [Fig. 1(d)]. With a combination of bright-field
experiments on quasi-2D colloidal suspensions, simula-
tions, and theory, we first demonstrate that fluctuating
counts can be used to determine self-diffusion coefficients

while removing the challenges associated with trajectory
reconstruction (Sec. II). We provide a recipe for practically
extracting the diffusion coefficient from suspensions at
variable particle densities that is sensitive to steric and
hydrodynamic interactions. Second, we uncover novel
collective behavior of our deceptively simple 2D colloidal
suspension, by increasing the observation box size
(Sec. III). A new length scale that characterizes a transition
between hyperuniformlike and collective states emerges
from our novel analysis of counts. We also find a surprising
enhancement, up to an order of magnitude, of collective
dynamics, that we can attribute to hydrodynamic inter-
actions. Overall, we demonstrate the potential to infer
dynamic properties from particle counting, a technique
with clear extensions to more complex systems where
single-particle microscope images are possible, including
motile particles, biological or artificial, in 2D as well as
in 3D.

II. SELF-DIFFUSION COEFFICIENTS
WITHOUT TRAJECTORIES

A. Particle number fluctuations in boxes
at low densities

Our experimental hard sphere model system consists of
monolayers of colloidal particles (diameter σ ¼ 2.8 μm)
gravitationally confined to the base of a glass cell [25,26].
Samples are imaged using a custom-built inverted micro-
scope with particle positions acquired from images using
standard particle tracking protocols [14,27]. The full range
of packing fractions associated with the fluid phase,
ϕ ¼ 0.02–0.66, is explored [28]. We simulate colloidal
suspensions using the Brownian dynamics method
described in Ref. [29] that includes hydrodynamic

FIG. 1. The countoscope to probe particle dynamics. (a) Numerical setup with freely diffusing colloids sedimented on a plane and artistic
representation of a virtual observation box (pink). (b) Image of the quasi-2D colloidal experiment at ϕ ¼ 0.34 with superimposed
observation boxes. (c) Example of particle number fluctuations observed in a box of size L ¼ 32 μm at ϕ ¼ 0.34, from simulations.
Counting particles does not require positions to be linked into trajectories, only that the position of each particle is sufficiently well resolved
with respect to the box edges. (d) Boxes with different sizesL are associated with different phenomena in systems at high packing fractions.
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lubrication. All simulation parameters, such as particle
diameter and temperature, are set to their experimentally
measured values, and steric forces are modeled using the
firm potential in Eq. (31) in Ref. [29]. Hydrodynamic
interactions can be turned off in our simulations by setting
the hydrodynamic mobility matrix to the identity matrix.
For both experiments and simulations, we characterize

fluctuations by counting the number of particles within
boxes of size L × L over time. This number, NðtÞ,
fluctuates between discrete values as a consequence of
particles diffusively entering and exiting the box [Fig. 1(c)].
For each box, we compute the mean-squared change in
particle number:

hΔN2ðtÞi ¼ hðNðtÞ − Nð0ÞÞ2i
¼ 2ðhN2i − hNi2Þ − 2ðhNðtÞNð0Þi − hNi2Þ
¼ 2ðhN2i − hNi2Þ − 2CNðtÞ; ð1Þ

where CNðtÞ ¼ hNðtÞNð0Þi − hNi2 is the time correlation
function for the particle number and h·i indicates an
average over all boxes and time origins within the
acquisition. Since hΔN2ðtÞi calculates differences between
frames, it yields more accurate results than the correlation
function CNðtÞ alone, e.g., by automatically removing
stuck particles.
In Fig. 2(a), we plot the mean-squared change in

particle number, hΔN2ðtÞi, for different box sizes in the
dilute regime (ϕ ¼ 0.02). Phenomenologically, hΔN2ðtÞi
increases with time and eventually plateaus, with experi-
ments (diamonds) and simulations (dashed lines) in perfect
agreement within error bars. Initially, number fluctuations

increase due to particles entering or exiting the box.
Over time, this eventually results in complete exchange
of particles inside the box with those outside, and we
observe a plateau. The number of particles at long times is,
therefore, uncorrelated with that in the initial configuration,
i.e., CNðtÞ ≃ 0, and, so, from Eq. (1), the plateau corre-
sponds to the variance hΔN2ðtÞi ≃ 2ðhN2i − hNi2Þ. For
low packing fractions, we expect the variance to be equal to
the average particle number ðhN2i − hNi2Þ ¼ hNi [30],
which suggests a rescaling of hΔN2ðtÞi by 2hNi. The time
required to reach this plateau depends on the characteristic
time to exchange particles. For diffusing particles, this is
simply the time to diffuse in and out of the box, L2=4D0.
Rescaling particle number fluctuations and time accord-
ingly, we obtain a remarkable data collapse [Fig. 2(b)].
We uncover the scaling function accounting for this

behavior using stochastic density field theory (sDFT)
[31,32], which models the fluctuating evolution of the
particle number density. Assuming relative density
fluctuations are small, we obtain (Supplemental Material
Sec. 2.1 [33])

hΔN2ðtÞi ¼ 2hNi
�
1 −

�
f

�
4D0t
L2

��
2
�
; where

f

�
τ ¼ 4D0t

L2

�
¼

ffiffiffi
τ

π

r
ðe−1=τ − 1Þ þ erfð

ffiffiffiffiffiffiffi
1=τ

p
Þ: ð2Þ

Equation (2) agrees remarkably well with our experimental
and simulation data [Fig. 2(b)]. The formalism can be used
similarly in d ¼ 1, 2, 3 dimensions, where the square factor
in Eq. (2) becomes ½fð4D0t=L2Þ�d. This allows one to
recover predictions such as Smoluchowski’s on noninter-
acting Brownian suspensions [2] or on ionic suspensions in
3D [34]. Curiously, the initial increase in time of hΔN2ðtÞi
is subdiffusive, growing as

ffiffi
t

p
, despite particle motion in

the dilute regime being strictly diffusive. As previously
predicted in 1D for noninteracting particles [35–37], this
subdiffusive scaling emerges from particle crossings in and
out of a box and, therefore, does not depend on the system’s
dimension.
Expanding Eq. (2) at early times predicts

hΔN2ðtÞi ¼ hðNðtÞ − Nð0ÞÞ2i ¼ 8ffiffiffi
π

p hNi
ffiffiffiffiffiffiffiffi
D0t
L2

r
: ð3Þ

Equation (3) is the analog of the mean-squared displace-
ment [15] hΔx2ðtÞi ¼ 2D0t but here for particle number
fluctuations. Equation (3) can, thus, be used to fit the
particle number fluctuations at early times to determine the
self-diffusion coefficient D0 simply by counting, and we
come back to further explanations on the fitting procedure
in Sec. II C. Crucially, our method accurately reproduces
D0 obtained from a conventional mean-squared displace-
ment within error bars (Table I, ϕ ¼ 0.02). Compared to

FIG. 2. Particle number fluctuations in the dilute regime.
(a) The mean-squared change in particle number at ϕ ¼ 0.02
for experiments (points) and simulations (dashed line). Colors
indicate increasing box sizes going from orange to yellow, and
solid horizontal colored lines correspond to 2hNi for each box
size. (b) Data from (a) are rescaled in y by the average number of
particles in a box, hNi, and in time by the diffusive timescale
L2=D0. The solid black line shows the prediction of Eq. (2). Error
bars on experimental data in (a) are shown as transparent regions
and represent 95% confidence intervals due to statistical error on
the averaging over multiple boxes and time origins, which is the
dominant source of error.
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the Stokes-Einstein prediction for D0 in the bulk, our
measured diffusion coefficient is reduced by about 70%
due to increased hydrodynamic friction with the base glass
cell [29].

B. Sensing steric and hydrodynamic interactions
at intermediate densities

Few experiments can be approximated as a noninteracting
system. We, therefore, move beyond Smoluchowski’s work,
and our own theoretical investigations in Refs. [34,35],
by developing the counting methodology in the dense

regime. In Fig. 3(a), we show hΔN2ðtÞi with L ¼ 8 μm
for experiments at ϕ ¼ 0.66, which is just below the freezing
transition [28]. Here, in contrast to systems at low ϕ,
experimental data significantly deviate from our analytic
expression, Eq. (2). This clearly demonstrates that particle
number fluctuations are sensing interparticle interactions.
To account for this effect theoretically, however, we must
understand which type of interactions, i.e., hydrodynamic
and/or steric, are at play.
To address this, we first include pairwise steric inter-

actions in the theory (Supplemental Material Sec. 2.2 [33]).
Conveniently, to implement this within sDFT, the detailed
form of the pairwise interactions need not be specified;
the only ingredient required is the static structure factor
SðkÞ, which is well established analytically for this colloi-
dal system [38] [Eq. (D4) [33] ]. We thereby obtain an
improved version of Eq. (2) as

hΔN2ðtÞi¼2hNi
Z

kdk
ð2πÞ2fVðkÞSðkÞð1−e−D0k2t=SðkÞÞ; ð4Þ

where the function fVðkÞ is a characteristic area

fVðkÞ ¼ L2

Z
dθ

�
2 sinðkL cos θ

2
Þ

kL cos θ

�
2
�
2 sinðkL sin θ

2
Þ

kL sin θ

�
2

: ð5Þ

Equation (4) simplifies to Eq. (2), when particle interactions
can be neglected, SðkÞ≡ 1. Equation (4) significantly
improves the agreement with experiments [Fig. 3(b)],
as the theory now reproduces the lower plateau value.
Here, we also show the corresponding result from simu-
lations with only steric repulsion between particles, which
also reproduces the plateau correctly. However, the early-
time behavior in experiments is not well captured with steric
interactions alone.
In Fig. 3(c), we show results for simulations that now

also include hydrodynamic interparticle interactions and
perfectly reproduce experimental data at all times. This
demonstrates that particle number fluctuations can be
understood only by accounting for both sterics and hydro-
dynamics. Including hydrodynamic interactions in the
theory is nontrivial [39]. However, an immediate improve-
ment to Eq. (4) can be achieved by replacing the infinite
dilution diffusion coefficient D0 with the short-time dif-
fusion coefficient Dhydro

0 , which is affected by hydrody-
namic interactions [26]. More specifically, Dhydro

0 < D0 at
high packing fractions, since hydrodynamics add friction
between nearby spheres [29,40]. With this correction,
our model Eq. (4) reproduces experimental data accurately
for all times [Fig. 3(c) and Supplemental Material
Sec. 1.3 [33] ].

TABLE I. Short-time self-diffusion coefficient
Dhydro

0 ð×10−2 μm2=sÞ) obtained through three different methods:

(i) Dhydro
0 ¼ hΔx2ðΔtÞi=2Δt using mean-square displacements

(MSD)—averaged over all particle trajectories and time origins
within a trajectory; (ii) Dhydro

0 using the countoscope Eq. (7); and
(iii) Eq. (6). Both (ii) and (iii) are obtained through an average
over a range of box sizes and time origins. See Supplemental
Material [33] for details. Error bars reflect the 3% experimental
uncertainty on converting a displacement from pixels to microns.
The duration of the movies used for all analysis is 20 min at 2
frames per second.

Method ϕ ¼ 0.02 ϕ ¼ 0.34 ϕ ¼ 0.66

hΔx2ðtÞi estimator 4.34 ð�0.13Þ 3.16 ð�0.10Þ 1.85 ð�0.06Þ
hΔN2ðtÞi second-
order estimator

4.36 ð�0.13Þ 3.16 ð�0.10Þ 1.83 ð�0.06Þ
hΔN2ðtÞi first-order
estimator

4.32 ð�0.13Þ 3.05 ð�0.09Þ 1.79 ð�0.05Þ

FIG. 3. Sensing steric and hydrodynamics effects. The mean-
square change in particle number for a box size L ¼ 8 μm and
packing fraction ϕ ¼ 0.66. Panels compare experimental data
(diamonds) to results from different simulation and modeling
scenarios (lines) in which (a) particles do not interact, (b) particles
have only steric interactions, and (c) particles feel both steric and
hydrodynamic interactions. For comparison, theory without
interactions (black line) is presented in each panel and corre-
sponds to Eq. (2). In (b), the slight deviation between simulations
without hydrodynamics and Eq. (3) is likely due to the
assumption of small relative density fluctuations in the theory.
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C. Guidelines to measure the short-time self-diffusion
coefficient from counts

Establishing the effect of interparticle interactions on
particle number fluctuations reveals that for dense systems
we can again use particle number fluctuations to quantify
dynamics. For interacting systems, at short times, expand-
ing Eq. (4) yields Eq. (3), where hΔN2ðtÞi is governed
by the short-time self-diffusion coefficient including inter-
particle hydrodynamics Dhydro

0 [dotted line in Fig. 3(c)].
This suggests a universal procedure to extract Dhydro

0 for
interacting systems as

Dhydro
0 ¼ πL2

Δt

�hΔN2ðΔtÞi
8hNi

�
2

; ð6Þ

where Δt ¼ 0.5 s is the time step between images. The
values of Dhydro

0 obtained for various packing fractions are
reported in Table I and are accurate, within error bars, in
reproducing that obtained from mean-squared displace-
ments. This confirms that the counting method is indeed
suited to measure individual dynamics in situations where
trajectory-based analysis is limited. Here, the number
fluctuations are evaluated only at the smallest time interval
hΔN2ðΔtÞi. This is consistent with approaches to accu-
rately fit to the mean-squared displacement for systems
with small localization uncertainty [41]. Alternatively, one
could use Eq. (3) [or even Eq. (2)] to fit data over multiple
time points. Conveniently, the estimator Eq. (6) does not
require knowledge of the structure factor SðkÞ, as sterics
affect fluctuations only at long times.
We next outline some practical guidelines for measuring

the short-time self-diffusion coefficient from fluctuating
counts. Most importantly, Dhydro

0 is determined by averag-
ing Eq. (6) over a range of box sizes, L∈ ½Lmin; Lmax�, and
this range should be chosen carefully. Lmin should be large
enough to resolve the early-time regime in the correlation
function, before the plateau. Lmax should not be too large as
an image can be paved with fewer large boxes than small
ones, resulting in increased statistical error on the corre-
lation function for larger L. This imposes a hard minima on
the time stepΔt which should be short enough to resolve the
early-time regime in the largest possible box, which is the
size of the field of view Lfield, i.e., Δt ≪ L2

field=D0. In
practice, provided this rather light experimental requirement
is fulfilled, not all but a suitable range of box sizes should be
accessible for any dataset. Using longer datasets with more
time points continuously improves statistics by reducing the
error on the correlation function. We find, however, that
approximately 150 time points (corresponding to 1.25 min at
2 frames per second) are sufficient to get accurate results
(Table S2 [33]). We provide more details on systematically
choosing the box size range in Supplemental Material [33].
On small boxes, errors on Dhydro

0 are typically larger,
as these boxes approach the plateau at shorter times,

and so deviations from the
ffiffi
t

p
scaling occur sooner (see

Fig. S7 [33]). Significant improvement can be obtained
by expanding Eq. (4) at short times to second order. This
yields an updated formula:

Dhydro
0 ¼ πL2

4Δt

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

hΔN2ðΔtÞi
2hNi

s 1
A2

ð7Þ

to estimate Dhydro
0 . Equation (7) converges to Eq. (6) in

the limit of early times, when hΔN2ðΔtÞi ≪ hNi. This
second-order estimator allows one to average data over a
wider range of box sizes and yields even more accurate
results (Table I).
Next, we use a sensitivity analysis to explore the extent

to which both estimators are robust to common experi-
mental artifacts. From this, we determine that our method
is relatively insensitive to systematic drift v in the data
(Table S3 [33]), provided the time resolution is fast
enough (Δt ≤ Dhydro

0 =v2). Lack of subpixel resolution in
positions also does not negatively impact our estimates
(Table S5 [33]). A small percentage of stuck particles
directly affects the uncertainty on Dhydro

0 by introducing
uncertainty on hNi. A 0.5%–1% fraction of stuck
particles—as we estimate in our setup—results in a
0.5%–1% error on Dhydro

0 , however, which is much smaller
than other sources of error. In contrast, a comparatively
small fraction of 0.1% blinking particles changes the
shape of the correlation functions and thereby reduces
the accuracy of our estimate of Dhydro

0 (Table S4 [33]). This
final effect arises from the sensitivity of counting to specific
system dynamics and, in fact, opens up the possibility of
future extensions of the method to quantify different
dynamic phenomena simultaneously. Overall, the above
analysis defines rather light constraints, making us hopeful
that a diversity of systems and setups beyond bright-field
microscopy should be able to access diffusive properties
with fluctuating counts.

III. FRESH INSIGHTS ON COLLECTIVE
PROPERTIES

We now turn to investigate collective dynamics at
high packing fractions, which are especially challenging
to resolve with trajectories. To measure collective dynamics
in dense states, we must first understand the static sig-
natures of collective effects. These are most clearly
observed in variations of the plateau value.

A. Particle interactions induce a hyperuniformlike
regime in the number variance at small scales

The plateau value corresponds to twice the particle
number variance, hΔN2ðt → ∞Þi ¼ 2½hN2i − hNi2�, and,
by setting t → ∞ in Eq. (4), we find
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hN2i − hNi2
hNi ¼

Z
kdk
ð2πÞ2 fVðkÞSðkÞ: ð8Þ

Therefore, the variance over different box sizes, and
consequently the plateau value, probes the structure factor
at different scales.
Figure 4(a) shows the plateau value as a function of

box size for three different values of ϕ, demonstrating
perfect agreement between simulation (with hydrodynamic
interparticle interactions) and theory. Here, oscillations in
the variance at high ϕ are a direct consequence of the
increasingly well-defined short-range structural order in
dense fluids; steadily increasing the box size naturally
probes regions of high and low particle density arising from
successive coordination shells [25].
Surprisingly, two regimes emerge from our theoretical

model for the scaling of the variance with box size,
for L ≥ σ. When L ≫ σ, a Taylor expansion of Eq. (5)
shows hN2i− hNi2 ¼ Sðk¼ 0ÞhNi ¼ Sðk¼ 0Þð4ϕ=πσ2ÞL2

(Supplemental Material Sec. 2.3 [33]). This recovers the

well-established link between number variance and the
compressibility χT of the system, as hN2i − hNi2=hNi ¼
Sðk ¼ 0Þ ¼ ρkBTχT [30,42], with ρ the mean particle
number density. In contrast, when L ∼ σ, fluctuations
scale with the length of the box and not the area, as
hN2i − hNi2 ¼ hNiσ=πL ¼ ð4ϕ=π2σ2ÞσL. The crossover
between the two regimes defines a unique length scale

ξ ¼ 1

π

σ

Sðk ¼ 0Þ ; ð9Þ

which we plot as a function of ϕ in Fig. 4(b). Rescaling the
number variance by hNi × ðσξ=πL2Þ and box size by ξ
shows perfect collapse of all experimental data [Fig. 4(c)]
and confirms the emergence of these two regimes.
This behavior can be interpreted by considering

the dominant contributions to number variance in a box.
For a large box, number fluctuations are entropy domi-
nated, associated with random placement of particles in
space. Since the particles are hard spheres, they cannot

FIG. 4. Hyperuniformlike behavior for small boxes defines a new length scale underlying colloidal fluctuations. (a) Particle number
variance hN2i − hNi2 with box size L, for increasing packing fractions ϕ. Data are from simulations including hydrodynamics (points)
with theory (lines) from Eq. (8). Experimental data (not shown for clarity) also agree. (b) Crossover length scale ξ [defined in Eq. (9)
with Eq. (D5)] with ϕ. Dots correspond to calculated values at the experimental packing fractions used in this study. (c) The rescaled
variance shows a collapse of the data and the emergence of a hyperuniformlike regime for boxes smaller than ξ. Experiments (diamonds)
with theory (lines) from Eq. (8). Box sizes are limited to L≳ σ; when L ≪ σ, we recover hN2i − hNi2 ¼ hNi (Supplemental Material
Sec. 1.1 [33]). (d) Schematic illustrating the hyperuniformlike regime for intermediate box sizes. Dark (light) purple disks highlight
large (small) groups of particles that are transiently in contact.
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interpenetrate, and configurations where particles would
overlap are not accessible. At high packing fractions, this
leads to transient regions with significant short-range
structural order [Fig. 4(d), pink box]. The variance is,
thus, reduced by a factor Sðk ¼ 0Þ that accounts for the
loss of conformations due to steric interactions, as
hN2i − hNi2 ∼ Sðk ¼ 0ÞhNi ¼ ρSðk ¼ 0ÞL2.
The surprising regime for small box sizes, where

hN2i − hNi2 ∼ L, can instead be investigated within the
framework of hyperuniformity [43–47]. A 2D system is
hyperuniform if number fluctuations scale at most like L in
the limit of infinitely large boxes [44]. A perfect crystal of
hard spheres is hyperuniform; however, hard-sphere liquids
are not [44]. In spite of this, a hyperuniformlike scaling
emerges for small boxes. Since this regime extends over
broader ranges of box sizes for larger packing fractions,
we suggest the scaling is a consequence of short-range
structural order [Fig. 4(d), blue box; see also Fig. S2 [33] ].
At length scales smaller than transiently ordered regions,
number fluctuations are dominated by the placement of
particles relative to the box boundary [48,49]. This results
in a variance scaling as the box perimeter multiplied by the
particle diameter hN2i − hNi2 ∼ 4Lσ.
The characteristic box size where these number fluc-

tuation regimes are equal defines the length scale ξ. The
presence of these two regimes is reminiscent of charged
particle systems [45,47,50,51] or particles interacting with
interfaces [52–54]; however, we are unaware of previous
accounts of the length scale ξ for hard sphere fluids [30].
In particular, this length scale reaches up to 13 particle
diameters in our densest system at ϕ ¼ 0.66, further
than the decay of the pair correlation function gðrÞ
or the bond-orientational correlation function g6ðrÞ, where
r is the interparticle distance (Supplemental Material
Sec. 1.2 [33]) [30]. The length scale ξ, which governs
the behavior of fluctuations, is thus apparently unrelated to
average correlation length scales. We note, however, that
the maximal extent of transiently ordered regions will be
larger than the average value, suggesting that ξ may instead
reflect this maximal value.

B. Direct measurements of collective diffusive dynamics

Inspired by the different regimes unravelled for static
properties at varying box sizes, we now explore dynamics
beyond the short-time limit that is linked to self-diffusion.
To this end, we define a timescale TðLÞ to characterize the
time when number fluctuations have relaxed—visually, the
time where hΔN2ðtÞi reaches the plateau—as

TðLÞ ¼ 2

Z
∞

0

�
CNðtÞ
CNð0Þ

�
2

dt

¼ 2

Z
∞

0

�
1 −

1

2

hΔN2ðtÞi
hN2i − hNi2

�
2

dt: ð10Þ

Our definition means that, for correlations that decay
exponentially, T would represent the timescale of the decay
as CNðtÞ=CNð0Þ ¼ expð−t=TÞ. Note that this definition
of the relaxation timescale is different from Ref. [34],
where here a squaring factor in the integrand ensures
that the integral converges, as the correlation function
decays algebraically at long times, CNðt → ∞Þ ∼ 1=t
(Supplemental Material Sec. 1.4 [33]).
In the absence of interparticle interactions, we find

analytically from Eq. (2) that T corresponds to the time
to diffuse across the box, TðLÞ ¼ αTL2=4D0, where
αT ¼ 2

R
fðτÞ4dτ ≃ 0.561 244… is a constant numerical

prefactor, calculated using fðτÞ from Eq. (2). This corre-
sponds, experimentally, to the low-density ϕ ¼ 0.02 case
where data can all be rescaled onto a single curve using
the same diffusion coefficient for all box sizes [Fig. 1(b)].
The rescaling indicates that, for noninteracting systems,
the same diffusion coefficient governs behavior irrespective
of the length and timescales considered.
At higher packing fractions, a simple rescaling of the

data with the self-diffusion coefficient fails (Supplemental
Material Sec. 1.4 [33]); i.e., the time required for fluctua-
tions to relax does not solely depend on how long it takes a
single particle to diffuse over a particular length scale.
Instead, for dense systems, the relaxation of number
fluctuations depends on the movement of multiple inter-
acting particles, hinting that it is governed by collective
phenomena.
To relate T to a diffusive phenomenon, we rearrange the

expression for TðLÞ to define a diffusion coefficient, that is
naturally dependent on the box size, as

DðLÞ ¼ αT
L2

4TðLÞ : ð11Þ

DðLÞ can be understood as the analogy of DðkÞ in
spectroscopy measurements where k is the wave
number [9,11]. We can calculate this diffusion coefficient
directly from our experimental or simulation data, shown
rescaled by Dhydro

0 in Fig. 5.
The diffusion coefficient at a specific scaleDðLÞ exhibits

four regimes that we first explore via theory (Supplemental
Material Sec. 2.4 [33]).

(i) For small L, DðLÞ converges to the self-diffusion
coefficient DðL ≪ σÞ ¼ D0, and so rescaled curves
DðLÞ=D0 should tend to 1. Note that D0 can be
replaced by Dhydro

0 to include hydrodynamics a pos-
teriori in the theory.

(ii) For intermediate box sizes, σ ≤ L ≤ ξ, we find
relaxation times are independent of the box size,
as TðLÞ ¼ βTσ

2=4D0, such that DðLÞ=D0 ¼
αTL2=βTσ2, where the numerical prefactor βT ¼
ð4 − πÞ=16 ≃ 0.054 [black dashed line in Fig. 5(a)].
This corresponds to the hyperuniformlike regime
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where fluctuations need only to relax over a length
scale equal to the particle diameter. In this regime,
for high packing fractions (ϕ ¼ 0.66, purple), we
observe oscillations in DðLÞ, likely resulting from
short-range structural order.

(iii) For larger length scales, analytically DðLÞ reaches a
maximum, due to an interplay between collective
dynamics speeding up the relaxation of fluctuations
and fluctuations increasing in amplitude as they
reach the entropic regime.

(iv) Finally, in the limit of large boxes, DðL ≫ ξÞ ¼
D0=Sðk ¼ 0Þ≡Dc reaches a second plateau, whose
expression corresponds to the collective diffusion
coefficient for systems with purely steric interactions
[42,55–57] (Supplemental Material Sec. 2.6 [33]).
Numerical simulations without hydrodynamics
(stars in Fig. 5) agree with the theory but plateau
to a slightly higher value for intermediate density
values. This discrepancy could originate from
large density fluctuations which are not accounted
for in our theory and in the derivation of
Dc ¼ D0=Sðk ¼ 0Þ [57,58].

Therefore, DðLÞ ∼ L2=TðLÞ characterizes the self-
diffusion coefficient on small boxes L ≪ σ, while on large
boxes L ≫ σ it probes collective diffusion.
We now compare this behavior with that of experiments

and simulations that include hydrodynamic interactions.
For small box sizes, rescaled values of DðLÞ=Dhydro

0

computed from Eq. (10) also tend to 1, indicating that
self-diffusion alone governs dynamics at this scale for all

times. As L increases, DðLÞ also increases as with the
theory. At high packing fractions (ϕ ¼ 0.66) and for L ∼ σ,
DðLÞ exhibits slightly dampened oscillations compared to
the theory, showing that, even for boxes with just 1–3
particles, hydrodynamics have a nontrivial effect. Finally,
for L ≫ σ, DðLÞ for systems with hydrodynamic inter-
actions is increased by a factor of 2–10, compared to the
theory that accounts for only sterics. Thus, hydrodynamic
interactions speed up diffusion and relaxation times sig-
nificantly in this collective regime. This is in stark contrast
with self-diffusion in dense systems, which is reduced
by hydrodynamic interactions with respect to the infinite
dilution case.
Collective diffusion coefficients in colloidal systems

have most commonly been probed in scattering experi-
ments by measurement of the wave-vector-dependent
diffusion coefficient DðkÞ from the dynamic structure
factor. For bulk 3D systems, it is generally accepted that
hydrodynamic interactions reduce the value of both self-
and collective diffusion coefficients [57,59,60]. Yet for
quasi-2D geometries, previous theoretical and experimental
works have suggested that long-range correlations between
particles can enhance collective motion dramatically,
resulting in a divergence of DðkÞ at small wave vectors
[57,61–65]. Interestingly, while we observe a clear
enhancement of DðLÞ arising from hydrodynamic inter-
actions between particles, our data show no sign of
divergence over the range of box sizes accessible to us.
This is likely a consequence of the different geometry
of our system (particles at a single wall as opposed to a

FIG. 5. Box-size-dependent diffusion coefficient measures individual and collective dynamics. (a) Rescaled box-size-dependent
diffusion coefficientDðLÞ=Dhydro

0 with rescaled box size L=σ, integrated from experimental and numerical data and theory via Eqs. (10)
and (11). The rescaling Dhydro

0 ¼ D0 is used for numerical data without hydrodynamics and for theory. Different colors indicate varying
packing fractions, going from low (yellow) to high (purple). (b),(c) The same as (a) highlighting only (b) ϕ ¼ 0.1 and (c) ϕ ¼ 0.34
packing fractions, which are the only two datasets where experimental data corresponds to 20 h acquisition. Error bars, presented on
experimental data only for simplicity, are propagated from errors in the timescale integrals—see details in Supplemental Material
Sec. 2.4 [33].
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fluid-fluid interface or between two closely spaced walls,
as in the aforementioned works), as this is known to
significantly influence the range over which hydrodynamic
interactions decay [66–68]. The relative sparsity of exper-
imental studies on collective diffusion to date means that a
systematic comparison between different geometries is,
however, lacking. The timescale integral in the counto-
scope, thus, offers a new way to shed light on the origins of
this hydrodynamic enhancement of collective dynamics.

IV. DISCUSSION

In both experiments and simulations, the importance of
static number fluctuations for characterizing the thermo-
dynamic properties of dense states has long been recog-
nized [44,47,51,69–84]. Dynamic number fluctuations are
a natural extension to this, representing a similarly prom-
ising tool that has yet to be explored [34,85]. Here, by
exploiting dynamic fluctuations, we introduce a robust,
broadly applicable framework for probing diffusive proper-
ties in a wide range of systems. Given that our experimental
geometry is commonly used, our findings for hard spheres
represent a crucial first step toward understanding more
complex particulate suspensions. Moving forward, we trust
our analytical approach can be extended to 3D, to solids or
crystals, and to diverse interparticle interactions via struc-
ture factor models [30,34,86,87]. Moreover, our counting
methodology does not, in principle, require equilibrium
conditions, hinting that out-of-equilibrium systems are also
amenable with this framework. Generally, counting is an
extremely sensitive tool as any dynamical feature, such as
drift, long-time diffusion, or motion in the third dimension,
should be reflected in the fluctuating counts. Going
forward, this implies that many more dynamical properties
can be extracted from fluctuating counts.
The countoscope complements existing techniques by

enabling the straightforward analysis of dense and hetero-
geneous systems or arbitrary mixtures, as the identification
of different species occurs in the position-finding step.
In contrast, spectroscopy techniques are often limited to
mixtures of only two types of particle, with one concen-
trated and one dilute component, due to the difficulty
of establishing models to connect diffraction patterns and
particle properties [12,13,88]. Microscopy techniques and
simulations involving trajectories cannot easily access
dynamics in heterogeneous states, since particles continu-
ously enter and exit regions of interest. The countoscope,
however, can harvest these fluctuating numbers. Collective
dynamics are hard to resolve for the same reason, as they
require simultaneously following many particles for
extended periods of time. As such, quantifying collective
dynamics from experimental data remains an indisputable
challenge, despite growing interest in collective phenomena
in soft and biological systems [89–93]. The countoscope
naturally lends itself to probing collective properties and,
thus, offers an important opportunity to determine

accurately the relaxation of fluctuations in the collective
regime, in a broad variety of systems.

All data needed to evaluate the conclusions in the paper
are present in the paper and/or Supplemental Material [33].
All other data are available upon reasonable request to the
authors. The code to analyze particle number fluctuations
from particle positions in time is available on Github, with
original release [94]. Simulation codes to generate particle
trajectories are available [95].
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APPENDIX A: EXPERIMENTAL DETAILS

Experiments are performed with highly monodisperse
carboxylate-functionalized melamine formaldehyde par-
ticles (Microparticles GmbH) with diameter σ ¼ 2.8 μm.
The particles are dispersed in a 20=80 v/v% water ethanol
mixture, and suspensions are loaded into quartz glass
flow cells. The high mass density of the particles
(ρ ¼ 1510 kgm−3) results in their rapid sedimentation to
the base of the cell to form a monolayer geometry with
packing fraction ϕ ¼ Nπσ2=4A, where N is the number of
particles and A the area imaged. As the gravitational height
of the particles is very small (approximately 2% of the
particle diameter), out-of-plane fluctuations of the particles
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are negligible. The sample cell is macroscopically large in
the plane of the sample but, importantly, also has a height of
at least 70 times the particle diameter. As such, from a
hydrodynamic perspective, particles interact significantly
only with the base of the cell.
Samples are imaged at a rate of 2 frames per second

using a custom-built inverted microscope with a field of
view 217 × 174 μm2. Measurements of the mean-square
change in particle number (as in Fig. 2) are initially
resolved from datasets recorded over 20 min. To accurately
compute the time integrals in Fig. 5, however, data are
recorded for approximately 20 h. Before computing the
integral, datasets are checked for any systematic drift in
particle displacement over the timescale of the measure-
ment. This is achieved by verifying that the mean-square
displacement of particle position scales linearly in time
over the course of the measurement.

APPENDIX B: NUMERICAL SIMULATIONS

All numerical simulations in this work are performed
using the lubrication corrected Brownian dynamics method
described by some of us in the context of dense suspensions
of active particles above a bottom wall [29,96]. In particu-
lar, hydrodynamic interactions are implemented using
the fast “spectralRPY” method for doubly periodic geom-
etries [66], which allows for very large system sizes to be
considered here [Oð104Þ particles]. In simulations where
hydrodynamic interactions are neglected, the mobility
matrixM is taken to be a multiple of the identity specified
by the self-diffusion coefficient D0, while the same “firm
sphere” steric forces [29] from the hydrodynamic simu-
lations are used to prevent overlaps (particle-particle and
particle-wall).
The only input parameters to the simulations are a time

step Δt, a periodic domain size Lp, an initial configuration
of particles, and the physical properties of the fluid—
taken from experimental measurements as viscosity
η¼1.4×10−3 Pa:s, temperature T¼22°C, particle diam-
eter σ¼2.79 μm, and particle buoyant force ðπ=6Þσ3Δρg ¼
5.92 × 10−14 N. To ensure that these parameter values
produce simulated particle dynamics consistent with
experiments, we compare the trajectory-based MSDs
and observe excellent agreement between simulated and
experimental measurements (see Supplemental Material
Sec. 1.1 [33]).
Initial configurations for the suspensions considered in

this work are sampled using a Markov chain Monte Carlo
method, where the number of particles Np and the in-plane
packing density ϕ ¼ Npπσ

2=4L2
p determine the periodic

system size Lp. The value of Np is the primary control
parameter of simulation efficiency. Larger values of Np

yield larger domain sizes and better statistics over the total
simulated time—at the expense of longer run times
and, thus, shorter simulated trajectories. These efficiency

considerations are used to find a suitable system size on a
case-by-case basis, with Lp ranging from 288 to 3200 μm.
The timescale for steric interactions between particles

controls the time step size used in our simulations. To
resolve these dynamics, we choose Δt empirically for each
value of ϕ so that temporal accuracy remains smaller than
statistical error. In simulations including hydrodynamics,
we find Δt ∼ 0.125–0.5 s. In simulations without hydro-
dynamics, which are known to attenuate the large steric
exclusion forces, we find that Δt needs to be much smaller
and, typically, Δt ∼ 10−4–10−2 s. To partially ameliorate
simulation efficiency in spite of this time step reduction,
we employ the time integration scheme introduced by
Leimkuhler and Matthews [97], which capitalizes on
additive Brownian noise.

APPENDIX C: PARTICLE NUMBER
FLUCTUATION ANALYSIS

1. Calculating NðtÞ from numerical
and experimental data

Data analysis is performed on sequences of the unlabeled
x and y coordinates of particle centres at time (frame
number) t obtained from segmented experimental images
and simulations. The total number of particles may change
from frame to frame. The field of view, assumed to be fixed
in time, is divided into M tiles based on the specified
observation box length L and a specified separation width
δL between boxes. We use this separation to ensure that the
statistics measured from each box are uncorrelated, which
is obtained simply by taking δL ≃ σ. We count the particles
whose centers fall within each observation box, generating
a time series of particle counts NiðtÞ for box indices
i ¼ 1;…;M.
Statistics such as hΔN2ðtÞi are estimated by first averag-

ing over time origins t0 and then using arithmetic means over
all of the boxes hhΔN2

i ðtÞit0ii, and confidence intervals are
estimated using two standard deviations over all of the
boxes. The average particle number hNi and variance
hN2i − hNi2 are estimated using the sample mean and
unbiased sample variance, computed using all of the boxes
and all of the frames. For a few data points (ϕ ¼ 0.66, largest
boxes), the plateau of hΔN2ðtÞi does not agree with the
sample variance due to large statistical errors, and we use the
plateau of hΔN2ðtÞi as a proxy for the variance.
Given the above estimates for hΔN2ðtÞi and

hN2i − hNi2, the timescale integral in Eq. (10) is calculated
using trapezoidal summation. When the observation box
size is very small, the integrand in Eq. (10) decays very
quickly, and much of its support may fall before the first
frame. When the observation box is very large, the decay is
slow and we may not have enough data to calculate the
integral accurately. Both of these issues can be addressed
by fitting our available data at short and long times
to theory-informed functional forms and calculating the
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missing contributions to the timescale integral. This pro-
cedure is described in detail in Supplemental Material
Sec. 1.5 [33], which also includes a discussion of how the
error bars are calculated for Fig. 5.

2. Early-time fits to obtain short-time
self-diffusion coefficients

Fitting to Eq. (6) can be used to estimate the value of
Dhydro

0 . For more accurate predictions, especially on small
box sizes, one can instead expand Eq. (4) at short times to
second order in time and obtain

hΔN2ðtÞi ¼ 8ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dhydro

0 t
L2

s
−
8

π

Dhydro
0 t
L2

: ðC1Þ

Then, an estimate of Dhydro
0 can be obtained by inverting

the above equation, which yields Eq. (7). To fit to these
equations, the average number of particles hNi in a box is
required. As correlations in number fluctuations decay
slowly in time (as 1=t), a simple estimate of hNi averaging
over all boxes and all times can be quite inaccurate.
In general, we find better results by computing the total
number of particles on each frame, averaged over time,
Ntot and the mean number of particles per box as
hNi ¼ NtotL2=L2

field.
We obtain a value of Dhydro

0 by averaging over boxes
logarithmically spaced between the smallest possible size
of a pixel (0.25 μm) and 32 μm, a box size which still
allows one to fit 5 × 5 boxes in the field of view.
Estimations reported in Table I initially consider 60 box
sizes in this range. From this set, we select a subset of box
sizes for which we expect the estimator to be sufficiently
accurate, according to rules outlined in Supplemental
Material Sec. 1.7 [33].

APPENDIX D: SOME ANALYTICAL
DERIVATIONS

1. Stochastic density field theory

Detailed steps to obtain the analytic expressions
above are reported in Supplemental Material [33]. Here,
we briefly recapitulate the main steps of the theory. We
consider an ensemble of particles with standard repulsive
interactions given by the interparticle potential UðrÞ, where
r is the distance between particles. Let ρðr; tÞ, where
r ¼ ðx; yÞ, be the particle number density field, so that
the instantaneous number of particles in the observation
square box of side L is

NðtÞ ¼
Z

L

0

Z
L

0

ρðx; y; tÞdxdy: ðD1Þ

While there are diverse strategies to calculate the statistical
properties of N [2,35,81,87,98–100], sDFT [31,101] stands
out here for its simplicity. sDFT directly describes

the fluctuations on the continuous field ρðr; tÞ due to
individual particle diffusion and has been successfully
applied in diverse systems to extract kinetic properties
[34,39,102–104]. In addition, compared to the original
techniques, e.g., used by Smoluchowski [2], which were
based on tracking individual particle jumps [35], sDFT can
easily account for particle interactions [34].
Our starting point is the Dean-Kawasaki equation [31,101]

for the particle density ρðr; tÞ:
∂ρðr; tÞ

∂t

¼ D0∇2ρþD0∇ ·

�
ρðr; tÞ∇

Z
d2r0ρðr0; tÞUðjr − r0jÞ

kBT

�

þ ∇ ·
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D0ρðr; tÞ
p

ζðx; y; tÞ
i
; ðD2Þ

where ζ is a two-component Gaussian noise, such
that hζiðx; y; tÞi ¼ 0 and hζiðx0; y0; t0Þζjðx; y; tÞi ¼
δijδðx − x0Þδðy − y0Þδðt − t0Þ.
By linearizing Eq. (D2) around the mean particle density

and using standard approximations for interparticle inter-
actions such as the random phase approximation [30], we
can obtain analytic expressions for particle number sta-
tistics in time.

2. Structure factor of hard spheres in 2D

In Eq. (4) and onward, we use an analytic expression for
the structure factor of hard spheres in 2D, which is based on
density field theory and is in remarkable agreement with
our 2D-sedimented colloidal experiments, as was verified
in a previous work [38]. We report it here for consistency:

SðkÞ ¼ 1

1 − ρcð2ÞðkÞ ; ðD3Þ

where ρ is the mean particle density and

cð2ÞðkÞ¼ π

6ð1−ϕÞ3k2
�
−
5

4
ð1−ϕÞ2k2σ2J0ðkσ=2Þ2

þ
�
4ððϕ−20Þϕþ7Þ

þ5

4
ð1−ϕÞ2k2σ2

�
J1ðkσ=2Þ2

þ2ðϕ−13Þð1−ϕÞkσJ1ðkσ=2ÞJ0ðkσ=2Þ
�
; ðD4Þ

where JiðxÞ are Bessel functions of the first kind. The limit
of vanishing wave number in Eq. (D4) can be taken
analytically:

Sðk ¼ 0Þ ¼ ð1 − ϕÞ3
1þ ϕ

ðD5Þ

and is consistent with the result from the scaled particle
theory equation of state.
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