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Inertia does not generally affect the long-time diffusion of passive overdamped particles in fluids. Yet a
model starting from the Langevin equation predicts a surprising property of particles coated with ligands
that bind reversibly to surface receptors: heavy particles diffuse more slowly than light ones of the same
size. We show this by simulation and by deriving an analytic formula for the mass-dependent diffusion
coefficient in the overdamped limit. We estimate the magnitude of this effect for a range of biophysical
ligand-receptor systems, and find it is potentially observable for tailored micronscale DNA-coated colloids.
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It is well known that inertia does not affect either the
equilibrium probabilities or dynamics in overdamped
systems [1], and especially that it does not affect the
long-time single-particle diffusion coefficient of micron-
scale particles in liquids at equilibrium [2]. Momentum
relaxation for micronscale particles occurs over a timescale
τm ≃ 1 μs (see Supplemental Material [3], Sec. 3.1), while
particles are generally observed on much longer timescales,
where the equilibrium motion is diffusive with diffusion
coefficient independent of mass for large enough particles
[4,5]. Inertia can only affect the short-time mobility of a
particle [2,5], and it can play a role for active particles
where τm is comparable to the diffusive rotational time-
scale, which is experimentally accessible only in air [6]. To
our knowledge, there is currently no proposed physical
system where inertia could affect the long-time single-
particle diffusion of micronscale particles in liquids at
equilibrium.
Yet, the overdamped dynamics of particles with

ligand-receptor contacts, such as colloids functionalized
with DNA [7–9], viruses [10–13], or white blood cells
[14–16] are not fully understood. Such particles are coated
with sticky ligands that bind and unbind to receptors on
an opposing surface, changing the particle’s mobility
[8,10,17,18]. The ligand binding and unbinding rates can
be fast, in some cases comparable to 1=τm [19,20]. One
might speculate that when binding occurs on the same
timescale as the relaxation of the ambient fluid’s momen-
tum, the coupling between binding dynamics and momen-
tum relaxation could lead to inertial effects at longer
timescales [2,4–6,21–27]. For example, bimolecular reac-
tants with inertia can show different survival probability
decay functions depending on their mass [28,29].
Furthermore, we have recently pointed out that models
of DNA-coated colloids find different long-time diffusion
coefficients when they start with the underdamped

Langevin equation for particle motion [30] (Fig. 1, dotted
line) or from the overdamped equation [20] (Fig. 1, dashed
line). We therefore ask: could inertia affect the long-time
diffusion of particles with ligand-receptor contacts?
Here, we shift the common perspective on overdamped

systems by showing that the long-time diffusion coefficient
of particles with ligand-receptor contacts depends on mass.
We investigate a minimal model for such particles that
includes the essential ingredients of (i) inertial relaxation
and (ii) stochastic dynamics of binding and unbinding. We
consider an N-legged particle of mass m, with springlike
“legs” representing the ligands [31–33], and a “sticker” at
the tip of each leg that may transiently attach to a uniformly
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FIG. 1. Mass changes the diffusion coefficient of a particle with
1 ligand. Top: Sketch of a particle of mass m with a single ligand
(leg); other parameters described in text. Bottom: Long-time
diffusion coefficient Deff of the particle as a function of inertia
to binding timescale ratio mqon=Γ, obtained from stochastic
simulations of Eqs. (1)–(3) and compared with analytic results, as
described in legend. Error bars are one standard devia-
tion for 20 independent simulations, with qon ¼ 0.01 k=Γ,
qoff ¼ 0.008 k=Γ, γ ¼ Γ.
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sticky surface (Fig. 1, inset). Using standard coarse-grain-
ing techniques [20,34,35], we derive an analytic expres-
sion, verified by simulations, that shows the long-time
diffusion coefficient DeffðmÞ decreases with mass (Fig. 1,
blue line). This inertial slowdown occurs when the binding
timescale is comparable to the inertial timescale, with a
magnitude increasing with leg stiffness and decreasing
with N, and we show it could potentially be measured in
DNA-coated colloids with targeted experiments.
Our model starts with the approach we introduced for

overdamped dynamics in Ref. [20], that, as we have shown,
reproduces the experimentally observed diffusion of certain
DNA-coated colloids. We modify the model to include a
dependence on mass. The particle’s motion is investigated
in 1D on the lateral dimension parallel to the surface. Legs
attach and detach independently to the surface with con-
stant rates qon, qoff . When unbound, the leg lengths lj
evolve according to

dlj
dt

¼ −
k
γ
ðlj − l0Þ þ

ffiffiffiffiffiffiffiffiffiffiffi

2kBT
γ

s

ηj; ð1Þ

where k is a spring constant [31–33], l0 is a rest length,
and γ is the friction coefficient of each leg. The ηj
are uncorrelated white Gaussian noises, such that
hηjðtÞηkðtÞi ¼ δkjδðt − t0Þ and hηjðtÞi ¼ 0, where h·i is
an average over realizations of the noise. Inertia of the
legs may be neglected as, in general, legs are much lighter
than the particle (see Supplemental Material [3], Sec. 2.4).
When bound, the legs are constrained to move at the same
speed as the particle, v ¼ dx=dt, where x is the particle
position

dx
dt

¼ dli
dt

¼ v: ð2Þ

Finally, the particle’s velocity is governed by Newton’s law,
including friction Γ and stochastic forces

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTΓ
p

ηx
induced by the ambient fluid, as well as friction, recoil,
and stochastic forces originating from the bound legs:

m
dv
dt

¼ −Γvþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTΓ
p

ηx

þ
X

i∈bound
ð−γv − kðli − l0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTγ
p

ηiÞ: ð3Þ

In the absence of legs, the particle diffuses with a bare
diffusion coefficient D0 ¼ kBT=Γ. The hydrodynamic
friction coefficient Γ depends on the distance to the wall
and may be obtained from lubrication theory [36,37] or
from measurements [38]. Here, the ηi and ηx are further
uncorrelated white Gaussian noises and i is a running index
over currently bound legs. For a particle in a fluid the
relevant mass scale in Eq. (3) ism → mþmf=2, wheremf

is the mass of the displaced volume of fluid [2,39].

We remark that in contrast to previous models [20,40],
here it is not necessary to project the unbound stochastic
dynamics to obtain the bound dynamics; Newton’s law is
sufficient. All parameters of the model, including the
binding rates, may depend on temperature T, which we
assume to be constant.
The Langevin dynamics in Eq. (3) are a common starting

point to investigate the effect of inertia [25,41]. Although
these equations imply an exponential decay of momentum,
which is faster than the algebraic decay that occurs in fluids
of similar density as the particle, as envisioned here [2], we
expect our model will give a lower bound on the effect of
inertia and is therefore suited to explore the onset of inertial
effects.
Stochastic simulations of our model show that the long-

time diffusion coefficientDeff of the particle depends on the
particle’s mass (see simulation details in Supplemental
Material, Sec. 1, building on Ref. [42]). For example, Fig. 1
shows that Deff for a 1-legged particle continuously
decreases with mass, by more than an order of magnitude,
from the overdamped [20] to the underdamped [30]
regimes.
To further understand how this decrease depends on

model parameters ðm;N; k; qon; qoff ; γ;ΓÞ, we derive an
analytic expression forDeff by considering the overdamped
limit of the combined particle and leg dynamics. We
introduce the five nondimensional scales:

x→Lxx̃; li− l0→Ll̃i; t→ τt̃; v→Vṽ; m→Mm̃:

Here, L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=k
p

is the characteristic length of leg
fluctuations, while Lx and τ are respectively the length
scale and timescale for the long-time motion of x. The
latter two scales are not determined a priori by intrinsic
scales [35,43], but rather are chosen large enough that
coarse graining will lead to diffusive dynamics [20].
Hence, Lx ¼ L=ϵ, where ϵ ≪ 1 is a small nondimensional
number, and τ ¼ L2

x=D0, which corresponds to τ ¼ Γ=kϵ2.
Velocity fluctuations are fast compared to diffusive
motion such that V ¼ Lx=τϵ. Importantly, we specify the
scale of mass by considering that the velocity autocorre-
lation time in the absence of recoil forces, τv ¼ τm ¼ M=Γ,
is small compared to the observation time, τv ¼ τm ¼ ϵ2τ.
This is the usual scaling to obtain overdamped, or
more generally long-time diffusive, dynamics [34].
Finally, we observe the system at sufficiently long times
that the remaining timescales are much shorter: γ=k∼
Γ=k ∼ q−1on ∼ q−1off , so that qon → ðτ=ϵ2Þq̃on and similarly
for qoff.
We use these scalings to coarse-grain Eqs. (1)–(3).

Standard coarse-graining techniques [20,30,34,35,44]
(see Supplemental Material, Sec. 2) show that the particle
diffuses at long times with diffusion coefficient
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DeffðmÞ ¼ kBT
ΓeffðmÞ ¼

X

N

n¼0

pn
kBT
ΓnðmÞ ; ð4Þ

where pn ¼ ðNnÞfqnonqN−n
off =½ðqon þ qoffÞN �g is the probabil-

ity to have n bonds and ΓnðmÞ are the effective friction
coefficients for a state with n bonds. The fΓng satisfy a
linear system of equations that is reported in Eq. (S2.23) in
the Supplemental Material [3] and that depends on para-
meters ðm;N; k; qon; qoff ; γ;ΓÞ. Importantly, Eq. (4) pre-
dicts up to order of magnitude changes on the effective
diffusion Deff depending on the specific microscopic
parameter values.
Let us analyze in detail a N ¼ 1-legged particle. The

friction coefficients can be obtained analytically as

Γ0ðmÞ
Γ

¼ 1þmqon
Γ

γeff
γeff þ Γþmðqon þ qoffÞ

;

Γ1ðmÞ
Γ

¼ 1þ γeff
Γ

Γþmqon
Γþmðqon þ qoffÞ

: ð5Þ

Here, γeff ¼ γ þ k½ð1=qoffÞ þ ðγ=kÞðqon=qoffÞ� is the effec-
tive friction from the leg, including the leg’s bare friction γ
and recoil forces from the tethered spring. The coefficients
satisfy Γ0 ≤ Γ1 as, when it is bound, the leg exerts addi-
tional recoil forces on the particle, as was observed in a
variety of systems, from rubber [45] to muscle friction [46]
to virus motion on mucus [12]. We compare our analytic
result forDeff with direct stochastic simulations over a wide
range of parameters and find excellent agreement (Fig. 1
and Fig. S1 in the Supplemental Material [3]). Overall, the
effective friction Γeff increases with mass, and therefore the
particle’s diffusion slows down with increased mass.
Equation (5) gives insight into what controls both the

onset of the diffusion slowdown and the magnitude of the
effect. Diffusion begins to decrease when the binding and
unbinding times τon ¼ q−1on , τoff ¼ q−1off become comparable
with the relaxation time of inertia, τm ¼ m=Γ. This is
apparent in Fig. 1, where the transition between limit
regimes occurs for mqon=Γ ∼ 1. For shorter binding times,
τon ∼ τoff ≪ τm, inertial effects matter, and the friction
coefficients for m ≫ Γ=qon, Γ=qoff converge to

Γm¼∞
0

Γ
¼ Γm¼∞

1

Γ
¼ 1þ p1

γeff
Γ

: ð6Þ

The friction coefficients are the same, regardless of the state
(bound or unbound) of the particle. This is coherent: since
the particle has significant inertia, it does not have time to
accelerate or decelerate to a different dynamical regime
upon changing state. Binding and unbinding happen too
rapidly for the particle to sense the difference. Equation (6)
was also obtained in Ref. [30] starting from the under-
damped equations.
Reciprocally, if binding timescales are long compared to

inertial relaxation (τon ∼ τoff ≫ τm) we expect inertia to

play a negligible role: the particle has time to accelerate
and reach an overdamped limit motion before any
further change of state occurs. In this case the friction
coefficients are

Γm¼0
0

Γ
¼ 1;

Γm¼0
1

Γ
¼ 1þ γeff

Γ
: ð7Þ

Equation (7) was also obtained in Ref. [20], starting with
overdamped equations for the particle.
We therefore find that the onset of inertial effects is

governed by the ratio of timescales, τon ∼ τoff compared to
τm. A posteriori, it is natural that this onset is controlled by
timescales, yet it was not obvious which of the diversity of
timescales would matter. For example, the timescale for
relaxation of leg fluctuations k=γ does not control the
occurrence of inertial slowdown.
However, k=γ does control the magnitude of the inertial

slowdown, via γeff . The relative slowdown between the
underdamped and the overdamped regime is

Dm¼∞
eff

Dm¼0
eff

¼ 1þ γeff
Γ

1þ γeff
Γ þ p0p1

γ2eff
Γ2

: ð8Þ

If the leg is very stiff (k ≫ Γqoff , implying γeff ≫ Γ), then
diffusion can be significantly slowed for massive particles,
Dm¼∞

eff ≪ Dm¼0
eff . Indeed, stiff legs greatly reduce motion in

the bound state, Γ1 ≫ Γ. Since a heavy particle does not
have the time to accelerate while its leg is unbound, we also
have increased friction in the unbound state Γm¼∞

0 ≫ Γ and
the particle’s overall mobility is decreased, by up to orders
of magnitude (as seen in Fig. 1). For an overdamped
particle, on the contrary, even with a stiff leg, the particle
can still move when it is unbound, as it has time to
accelerate (Γm¼0

0 ¼ Γ), and its diffusion coefficient remains
finite.
Let us now consider a particle with many legs involved

in the binding process, say, N ≈ 100–1000, as in
some DNA-coated colloids at low temperatures [47,48].
When the average number of bonds is large, N̄ ¼
½qon=ðqon þ qoffÞ�N ≫ 1, the fΓng can be approximated
by the averaged value ΓN̄ (see Supplemental Material [3],
Sec. 2.3.4), yielding

ΓeffðmÞ ≃
N̄≫1

Γþ N̄γeff : ð9Þ

The diffusion coefficient no longer depends on the mass of
the particle. Stochastic simulations, as well as numerical
solutions of the linear system satisfied by the fΓng, confirm
this result: the diffusion coefficient when N is large
converges to a value independent of mass (Fig. 2).
Interestingly, the transition to the slowed-down diffusion
regime occurs when τm=τon ∝ N (see Supplemental
Material [3], Sec. 2.3.3).
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Why do inertial effects vanish with a large number of
legs? For a heavy particle, the friction coefficients for each
bond state are equal [as in Eq. (6)]: Γm¼∞

0 ¼ Γm¼∞
1 ¼ … ¼

Γm¼∞
N ¼ Γþ N̄γeff (see Supplemental Material [3],

Sec. 2.3.2), because the particle does not have time to
accelerate between bond state changes, and hence is only
sensitive to the average configuration. The difference is that
now an average of N̄ legs exerts extra recoil forces. For a
very light particle, friction coefficients for each bond state
are different, but their sum in Eq. (4) is dominated by the
most likely state, which is N̄ when this average is large,
leading to Γm¼0

eff ≈ Γm¼0
N̄ ¼ Γþ N̄γeff . Numerous legs can

thus be thought of as self-averaging, and hence transitions
between states do not matter as much as when there are a
small number of bound legs.
We now explore the possible emergence of such inertial

effects in biological or biomimetic systems where a small
average number of bound legs N̄ ≃ 1 is inherent, or can be
achieved, e.g., with temperature control [48]. To observe
inertial effects, the binding times (τon ¼ q−1on , τoff ¼ q−1off )
have to be faster than the inertial relaxation time
τm ¼ m=Γ. As typical adhesive systems have qoff ≲ 10qon,
we focus on qon. We report in Fig. 3 the orders of
magnitude for the momentum relaxation time τm ¼ m=Γ
and binding times τon ¼ q−1on for a variety of particles with
ligand-receptor contacts using data available in the liter-
ature [13,19,32,47–80] (recapitulated in Supplemental
Material [3], Sec. 3.2).
Numerous ligand-receptor systems have binding kinetics

that are too slow to observe inertial effects, with
qon ≲ 100 s−1 (blue dashed circle in Fig. 3), e.g., spike
proteins on the Influenza Avirus [49,50], molecular motors
transporting cargos [81], and pili adhesion of Escherischia
Coli [65–67].

Other systems have fast binding kinetics (qon ≳ 104 s−1),
but not fast enough to incur inertial effects on the lighter
systems they are connected to (gray dashed circle in Fig. 3).
These often correspond to smaller particles, and since
m=Γ ∝ R2, this decreases the maximum binding timescale
required to observe inertial effects. Examples include Sars
CoV 1 and 2 viruses [79,80], DNA-coated nanocolloids
[53], and protein transporters in the nuclear pore com-
plex [73].
Inertial effects may occur for two systems with a specific

combination of large particles and fast binding kinetics
(orange dashed circle in Fig. 3): (i) micron-sized
DNA-coated colloids near their melting temperature and
(ii) white blood cells with adhesion mediated by L-selectin.
For both systems, typical existing experimental de-
signs possess an inertia to binding timescale ratio
mqon=Γ ≃ 10−3 − 10−1, which is close to the range where
we predict inertial slowdown.
DNA-coated colloids offer a promising route to probe

such inertial slowdown, as they may be finely tuned by
changing their size, coating density, ligand length, material
composition, etc., and to observe diffusion over several
degrees [20,51]. We speculate that inertial effects could be
observed by solving the challenge of building such colloids
with different cores [54,82] but keeping the surface DNA
coatings the same: using a gold [47] or a polystyrene [48]
core to make a heavy or a light particle, respectively.
To maximize inertial effects, one must increase both

mqon=Γ, to reach the transition between the noninertial and
inertial regimes, and γeff=Γ, to increase the magnitude of
the slowdown; see Eq. (8). The latter ratio, in DNA-coated
colloids, is typically dominated by the term k=Γqoff . This
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values found in the literature (see Supplemental Material [3],
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except for DNA-coated colloids whose parameters are taken at
their respective melting temperatures [48]. Large dashed circles
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represents parameter values where inertial effects could be
important.
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points to the dual role of certain parameters. For example,
while increasing the particle radius increasesmqon=Γ (since
m ∝ R3 and Γ ∼ R), it decreases k=Γqoff , and hence an
optimal particle radius is needed. Furthermore, while
shorter polymer lengths increase stiffness k, they also
increase hydrodynamic friction Γ through lubrication
effects [36,37] and hence an optimal polymer length is
also required. We elaborate in detail on the role of various
experimental parameters in Sec. 4 of the Supplemental
Material [3], and we provide a predictive tool for the rapid
exploration of different material designs [83].
We estimate the change in diffusion coefficient as a

function of temperature that using different cores would
induce (Supplemental Material, Sec. 4), computing Deff
using Eq. (4). We compute the temperature dependence of
N and qoff using a mean-field model that has been validated
experimentally [31,48,84–86], observing that qon, γ, Γ do
not change significantly with temperature [52]. The differ-
ence between the diffusion coefficients of gold and poly-
styrene colloids is maximal at intermediate temperatures
where colloids form only a few bonds (N̄ ¼ 1–10) with the
surface (Figs. S3–S6 in Supplemental Material [3]).
Drawing parameters from existing particle systems, we
predict the difference in diffusion coefficients to be 1%–2%
(Fig. S3 in Supplemental Material [3]). While this is a small
effect at the single-particle level, mass discrepancies
between numerous particles, and hence diffusion coeffi-
cient discrepancies, could accumulate to impact collective
properties such as nucleation, annealing (as was seen in a
different context [87]) or trigger mass-dependent phase
separations. Fine-tuning particle coatings, e.g., reducing
the ligand length with commercially available ligands,
could increase the difference in single-particle diffusion
coefficients to 6%–7% (Figs. S4 and S5 in Supplemental
Material [3]), which is well within experimental accuracy
[20]. Exploiting further advanced experimental conditions
such as changing the solvent [88,89] increases the discrep-
ancy to 10%–20% (Fig. S6 in Supplemental Material [3]).
In summary, our model predicts that inertia could modify

the diffusion coefficient of particles in fluids with ligand-
receptor contacts, inducing a diffusion slowdown with
increased inertia. The onset of the slowdown occurs when
the binding timescale τon ¼ q−1on is faster than the timescale
for the inertial relaxation, which is τm ¼ m=Γ in our model,
a lower bound on the actual timescale since momentum
decays algebraically in most fluid systems [2,5]. The
magnitude of the inertial slowdown is increased with stiff
ligands and fewer bound legs. Improvements to our model
could include, among other things, fluid memory kernels to
investigate the algebraic decay of momentum [2] or ligand
density inhomogeneities to probe subdiffusive dynamics
that are observed at low temperatures [47]. As the main
principles inducing mass-dependent dynamics are essential
to the account of ligand receptors, namely binding and
unbinding and altered motion when bound, it is reasonable

to assume that mass-dependent diffusion should persist in
any ligand-receptor model. We predict the diffusion
slowdown could be probed experimentally by fine-tuning
DNA-coated colloids.
Our analysis thus provides a key principle to investigate

the onset of inertial effects in other micronscale particles in
liquids. When there exists a physical timescale in the
system that is fast, and comparable to the relaxation of
inertia, inertial effects could arise. This criterion is repeat-
edly observed in other contexts [2,4–6,21–27]. However, in
general inertial effects do not necessarily imply that the
diffusion coefficient depends on mass. For example, when a
particle has an inertial relaxation time comparable to the
relaxation time of the solvent, then the particle’s velocity
autocorrelation function decays algebraically instead of
exponentially, but its diffusion coefficient remains inde-
pendent of inertia [2]. Hence, an overdamped equilibrium
system where single-particle diffusion depends on mass
remains surprising.
Targeted experiments, especially on particles with

ligand-receptor contacts, could identify other inertial
effects beyond diffusion slowdown. For DNA-coated col-
loids, one could envision that such inertia-modified dynam-
ics could also impact collective properties such as
crystallographic alignment into self-assembled structures
[40,90]. Understanding the dynamics of such complex
micronscale particles is a key step to pave the way toward
controlled design at the microscale, e.g., to improve
synthesis of materials with advanced optical properties
[91,92].

The authors thank Brennan Sprinkle for sharing his code
to calculate lubrication forces, and Aleksandar Donev for
fruitful discussions. S. M. received funding from the
European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant
Agreement No. 839225, Molecular Control. All authors
were supported in part by the MRSEC Program
of the National Science Foundation under Grant
No. DMR-1420073. M. H.-C. was partially supported by
the US Department of Energy under Award No. DE-
SC0012296, by Grant No. NSF-DMS-2111163, and
acknowledges support from the Alfred P. Sloan
Foundation.

*Corresponding author.
sophie@marbach.fr

†Corresponding author.
holmes@cims.nyu.edu

[1] M. E. Cates and V. N. Manoharan, Celebrating Soft Matter ’s
10th anniversary: Testing the foundations of classical
entropy: Colloid experiments, Soft Matter 11, 6538 (2015).

[2] X. Bian, C. Kim, and G. E. Karniadakis, 111 years of
Brownian motion, Soft Matter 12, 6331 (2016).

PHYSICAL REVIEW LETTERS 129, 048003 (2022)

048003-5

https://doi.org/10.1039/C5SM01014D
https://doi.org/10.1039/C6SM01153E


[3] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.048003 for addi-
tional information on simulation methods, for analytical
details on the coarse-graining procedure and analytical
assumptions, for references and numbers used to establish
Fig. 3 and finally for the calculation procedure used
to evaluate the diffusion coefficients of light and heavy
DNA-coated colloids.

[4] J. Schmidt and J. Skinner, Hydrodynamic boundary con-
ditions, the stokes–Einstein law, and long-time tails in the
Brownian limit, J. Chem. Phys. 119, 8062 (2003).

[5] F. Balboa Usabiaga, X. Xie, R. Delgado-Buscalioni, and A.
Donev, The stokes-Einstein relation at moderate schmidt
number, J. Chem. Phys. 139, 214113 (2013).

[6] H. Löwen, Inertial effects of self-propelled particles: From
active Brownian to active langevin motion, J. Chem. Phys.
152, 040901 (2020).

[7] R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C.
Schatz, and C. A. Mirkin, Nanoparticle superlattice engi-
neering with dna, Science 334, 204 (2011).

[8] W. B. Rogers, W. M. Shih, and V. N. Manoharan, Using
DNA to program the self-assembly of colloidal nanopar-
ticles and microparticles, Nat. Rev. Mater. 1, 16008 (2016).

[9] D. J. Lewis, L. Z. Zornberg, D. J. Carter, and R. J.
Macfarlane, Single-crystal winterbottom constructions of
nanoparticle superlattices, Nat. Mater. 19, 719 (2020).

[10] M. Mammen, S.-K. Choi, and G. M. Whitesides, Polyvalent
interactions in biological systems: Implications for design
and use of multivalent ligands and inhibitors, Angew.
Chem., Int. Ed. Engl. 37, 2754 (1998).

[11] T. Sakai, S. I. Nishimura, T. Naito, and M. Saito, Influenza a
virus hemagglutinin and neuraminidase act as novel motile
machinery, Sci. Rep. 7, 1 (2017).

[12] T. Sakai, H. Takagi, Y. Muraki, and M. Saito, Unique
directional motility of influenza c virus controlled by its
filamentous morphology and short-range motions, J. Virol.
92, e01522 (2018).

[13] M. Müller, D. Lauster, H. H. Wildenauer, A. Herrmann, and
S. Block, Mobility-based quantification of multivalent
virus-receptor interactions: New insights into influenza a
virus binding mode, Nano Lett. 19, 1875 (2019).

[14] R. Alon and S. Feigelson, From rolling to arrest on blood
vessels: Leukocyte tap dancing on endothelial integrin
ligands and chemokines at sub-second contacts, in Seminars
in Immunology (Elsevier, New York, 2002), Vol. 14,
pp. 93–104.

[15] K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh,
Getting to the site of inflammation: The leukocyte adhesion
cascade updated, Nat. Rev. Immunol. 7, 678 (2007).

[16] C. B. Korn and U. S. Schwarz, Dynamic states of cells
adhering in shear flow: From slipping to rolling, Phys. Rev.
E 77, 041904 (2008).

[17] P. C. Bressloff and J. M. Newby, Stochastic models of
intracellular transport, Rev. Mod. Phys. 85, 135 (2013).

[18] D. A. Hammer, Adhesive dynamics, J. Biomech. Eng. 136,
021006 (2014).

[19] U. S. Schwarz and R. Alon, L-selectin-mediated leukocyte
tethering in shear flow is controlled by multiple contacts and
cytoskeletal anchorage facilitating fast rebinding events,
Proc. Natl. Acad. Sci. U.S.A. 101, 6940 (2004).

[20] S. Marbach, J. A. Zheng, and M. Holmes-Cerfon, The
nanocaterpillar’s random walk: Diffusion with ligand-
receptor contacts, Soft Matter 18, 3130 (2022).

[21] T. Li and M. G. Raizen, Brownian motion at short time
scales, Ann. Phys. (Berlin) 525, 281 (2013).

[22] A. Daddi-Moussa-Ider, A. Guckenberger, and S. Gekle,
Long-lived anomalous thermal diffusion induced by elastic
cell membranes on nearby particles, Phys. Rev. E 93,
012612 (2016).

[23] M. Trulsson, B. Andreotti, and P. Claudin, Transition from
the Viscous to Inertial Regime in Dense Suspensions, Phys.
Rev. Lett. 109, 118305 (2012).

[24] F. Boyer, É. Guazzelli, and O. Pouliquen, Unifying
Suspension and Granular Rheology, Phys. Rev. Lett. 107,
188301 (2011).
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