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The nanocaterpillar’s random walk: diffusion
with ligand–receptor contacts†

Sophie Marbach, *ab Jeana Aojie Zhengc and Miranda Holmes-Cerfon a

Particles with ligand–receptor contacts bind and unbind fluctuating ‘‘legs’’ to surfaces, whose fluctua-

tions cause the particle to diffuse. Quantifying the diffusion of such ‘‘nanoscale caterpillars’’ is a chal-

lenge, since binding events often occur on very short time and length scales. Here we derive an

analytical formula, validated by simulations, for the long time translational diffusion coefficient of an

overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that the effective

diffusion coefficient, which depends on the microscopic parameters governing the legs, can be orders

of magnitude smaller than the background diffusion coefficient. Furthermore it varies rapidly with tem-

perature, and reproduces the striking variations seen in existing data and our own measurements of the

diffusion of DNA-coated colloids. Our model gives insight into the mechanism of motion, and allows us

to ask: when does a nanocaterpillar prefer to move by sliding, where one leg is always linked to the

surface, and when does it prefer to move by hopping, which requires all legs to unbind simultaneously?

We compare a range of systems (viruses, molecular motors, white blood cells, protein cargos in the

nuclear pore complex, bacteria such as Escherichia coli, and DNA-coated colloids) and present

guidelines to control the mode of motion for materials design.

Particles with ligand–receptor contacts – or nanocaterpillars –
harvest binding and unbinding dynamics of their fluctuating
legs at the nanoscale to move, target, stick, or assemble into
large structures.1–4 Nanocaterpillars are found across multiple
scales, spanning a great variety of systems in biology and
biomimetic assays – see Fig. 1A. To name but a few, microscale
white blood cells with protein linkers stick and roll on blood
vessel walls until they reach a healing target.5–7 Microscale
droplets with protein linkers are used to study cellular-like
adhesion.8–10 Microscale to nanoscale colloids coated with
complementary deoxyribonucleic acid (DNA) strands self-
assemble into macroscopic crystals4,11,12 with novel optical or
selectivity properties.13–16 Nanoscale viruses transiently adhere
with spike proteins to the respiratory mucus to find vulnerable
host cells.1,17–19 At even smaller scales, protein cargos bind to
receptors in the nuclear pore complex for selective transport to
a cell’s nucleus.20,21

For all these systems to function, a nanocaterpillar must
move relative to the surface to which its legs are attracted. An
important question therefore is to characterize how it moves,

over scales much larger than individual legs. Since legs con-
stantly bind and unbind to the surface, imparting force each

Fig. 1 Overview of nanocaterpillars. (A) Multivalent ligand–receptor sys-
tems span the micro to nanoscales. White blood cells stick to vessel walls
through selectin mediated bonds (inspired from ref. 7); DNA-coated
colloids self-assemble through hybridization of complementary DNA
strands; Protein cargos translocate through the polymer mesh of the
nuclear pore complex (inspired from ref. 22). (B) Ligand–receptor systems
are modeled here with an arbitrary number of legs N (ligands) and/or arms
(receptors). The stochastic model includes binding and unbinding rates qon

and qoff, spring constant k, and leg friction g (all fast, in blue); and the bare
friction coefficient G of the nanocaterpillar (slow, in black). We seek the
long-time effective longitudinal diffusion coefficient Deff.
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time they do so, the particle’s macroscopic mobility depends on
the microscopic details of its legs. For example, leg flexibility
and bond lifetimes control the average mobility of the
particle,19,23,24 and differences in both parameters can be
harvested to detect infected cells25–27 or prevent viral
infections.28 As another example, leg density affects how
DNA-coated colloids nucleate and grow into crystals29,30 and
governs the long-range alignment of crystals.31–33 Overall,
microscopic details underlie a variety of large-scale modes of
motion, such as hopping,3,17,34,35 cohesive motion including
rolling and crawling,17,36 and also transient or firm arrest,3,5,37

resulting in large differences in macroscopic mobility.
Investigating how microscopic binding details lead to

macroscopic mobility is challenging, as it requires probing
time and length scales that can often be quite different19,38 –
legs can be much smaller than the nanocaterpillar they are
attached to, while leg dynamics can be orders of magnitude
faster than the timescales of macroscopic motion. Further-
more, many systems have a valency of thousands of leg
contacts,31,38,39 too many degrees of freedom to resolve experi-
mentally or computationally.22,40 To make progress, numerical
and analytical models often rely on simplified assumptions, e.g.
excluding stochastic relaxation of the legs,41,42 limiting the
analysis to a small number of legs,41,43,44 or assuming small
perturbations.22 Such models have given insight into a variety
of phenomena, such as how specific parameters could favor
rolling over sliding7,41,43,45,46 or how specific mechanisms
could increase overall mobility (with coupling effects such as
binding dynamics depending on bond number47–49 or when
numerous adhesive sites are available for a single ligand22,50,51).
Nevertheless, such modeling assumptions are not always justi-
fied; for example stochasticity plays a critical role for mobility,
facilitating rolling,37 targeted arrest,40 or other walking
modes.52 Furthermore, such models can also not reproduce
the order of magnitude decrease of diffusion of DNA-coated
colloids.31,39 Hence, a systematic derivation of macroscopic
mobility from microscopic details that is valid under a broad
range of parameters is needed.

In this paper we derive an analytical expression for the
effective mobility of a nanocaterpillar in an overdamped
system, by systematically coarse-graining over the microscopic
details of its legs. Starting from a model that includes the
detailed spatial fluctuations of the legs, we use homogeniza-
tion techniques22,53,54 to average over these fluctuations. We
obtain an analytical expression for the effective long-time
translational diffusion coefficient of the particle, Deff(N, G,
g, k, qoff, qon), as a function of the microscopic parameters
governing the legs (eqn (15); see also Fig. 1B and Section 1)
The expression depends in a non-trivial way on the friction
coefficients of the individual components of the system
(legs and particle), with the frictions either adding up arithme-
tically (like springs in parallel) or harmonically (like springs in
series) according to the mechanistic details. We validate our
analytical calculations with numerical simulations, which show
the expression is accurate over a wide range of parameter
values.

Our model gives insight into the mechanism of nanocater-
pillar motion, as it allows us to distinguish between two long
term modes of motion: sliding, where at least one bond is
always attached to the surface, and hopping, where the particle
detaches completely, moves in free space and reattaches. These
regimes are controlled by physical properties of the legs, such
as stiffness and adhesive strength, allowing us to investigate
existing biological and biomimetic systems in a so-called
Ashby chart for nanocaterpillars (Section 2). We identify
how critical design parameters (such as the coating density
for DNA-coated colloids) controls the preferential mode of
motion and reconcile disparate experimental observations on
similar systems.31,39

Importantly, the effective diffusion can sometimes be orders
of magnitude smaller than the background diffusion coeffi-
cient, showing the critical effect of the legs on the particle’s
mobility. This analytical prediction of a dramatically decreased
diffusivity is borne out with experimental measurements of the
diffusion of DNA-coated colloids, both from existing data31,39

and additionally measured in this study. Our model agrees with
the data within experimental accuracy over a range of tempera-
tures and for different DNA coating densities on the colloids
(Section 2).

Finally, we derive the effective diffusion coefficient for
several variations of the model with varying assumptions, and
show that our model incorporates these assumptions as special
limits,22,54 but is accurate over a broader range of parameters
and system designs (Section 3). In particular, previous
approaches can not describe the observed orders of magnitude
decrease in diffusion.22 Overall, our results lay the ground to
tune mobility features in artificial designs, and provide meth-
odological tools to study more complex motion mediated
through ligand–receptors, including rolling or self-avoiding
walks due to active cutting of bonds.

1 Deriving an analytical formula for the
effective diffusion coefficient

In Sections 1.1–1.3 we illustrate our homogenization technique
pedagogically by considering a 1-legged caterpillar. Our main
result for the effective diffusion coefficient of an N-legged
caterpillar, eqn (15), is presented in Section 1.4.

1.1 1-Legged caterpillar: constitutive equations

We begin with the simplest possible model: a nanocaterpillar
with a single leg (Fig. 2). The leg is permanently fixed to the
caterpillar while its other end is mobile, and can attach any-
where on the binding surface. We consider for now a one-
dimensional model, where leg fluctuations and particle motion
occur on a line, longitudinal to the surface.

The dynamics of the particle position x(t) and leg length l(t)
occur over nano to microscales, mostly in dense fluids such as
water. In this context, dynamics are well captured by over-
damped Langevin equations,55 where inertia plays a negligible
role. This is in contrast to previous modeling efforts which used
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the Langevin equation (with inertia),54 a point we return to in
Section 3, where we show that the two approaches can give
predictions that are orders of magnitude different in certain
parameter regimes.

When the legs are unbound they evolve as

dl

dt
¼ �k

g
ðlðtÞ � l0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

g

s
ZlðtÞ: (1)

Here k is a spring constant describing the recoil force of the leg
material, g is its friction coefficient, l0 its rest length, kB is
Boltzmann’s constant, T is temperature and Zl is a Gaussian

white noise satisfying ZlðtÞ ¼ 0 and ZlðtÞZlðt 0Þ ¼ dðt� t 0Þ where :
is the average over realizations of the noise. In most systems we
consider, legs are made of polymers or proteins, where small
leg deformations around equilibrium are well captured by a
constant spring constant k.56–58

The particle’s position x when the leg is unbound obeys

dx

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

G

r
ZxðtÞ (2)

where G is the friction coefficient of the particle and Zx(t) is a
Gaussian white noise uncorrelated with Zl(t). The diffusion

coefficient for the unbound particle is D0 ¼
kBT

G
.

We consider for now that the surface is uniformly coated
with receptors. The leg can thus bind at any location on the
surface with a constant binding rate qon and constant unbind-

ing rate qoff. Detailed balance requires
qon

qoff
¼ pb

pu
where pb/u is

the equilibrium probability of the system to be bound or

unbound. Typically
pb
pu
¼ e�bDG, where b�1 = kBT and DG o 0

is the free energy change when the leg binds to the surface.38,59

We now seek to describe motion of the system when the leg is
bound. In this case, variables are constrained as x(t) + l(t) � xr =
0 where xr is the location of the receptor where the leg tip is
attached, which is constant until the leg detaches and reat-
taches to another location. The stochastic dynamics eqn (1) and
(2) must be projected32,60 onto the constraint surface, see
Appendix A. We obtain

dx

dt
¼ �dl

dt
¼ k

Gþ g
ðlðtÞ � l0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

Gþ g

s
ZðtÞ (3)

where Z(t) is a Gaussian white noise. Here we see that the
projected dynamics have a natural expression where the effec-
tive friction in the bound state is the arithmetic sum of the
friction coefficients in the unbound states, G + g. Note that this
projection is a crucial step that is often ignored in such
derivations,22,32,54 and modifies the dynamics in non trivial
ways especially with a large number of legs.

The dynamics are now specified through the set of eqn (1)–
(3), together with the binding and unbinding dynamics. To see
what happens over long times, we simulate trajectories for
1 leg – see Fig. 2B (and simulation details in Appendix B). Over
long times, the particle’s mean-squared displacement grows
linearly with time, and we may extract an effective long time
diffusion coefficient Deff – see inset of Fig. 2B.

1.2 Homogenization to coarse-grain the fast dynamics

The computational cost of simulating eqn (1)–(3) is high, since
small time steps are required to resolve the fast relaxation and
binding events. We therefore seek an analytical method to
coarse-grain over these fast timescales. To apply this method
we identify a non-dimensional separation of scales, which is
novel compared to other approaches22,51,54 and will allow us to
find a result valid over a broad range of parameters. We use
homogenization theory to average over the fast scales, even-
tually obtaining an effective diffusion equation, eqn (10), with
effective diffusivity (eqn (11)) and related effective friction
(eqn (12)), which is one of the main results of this paper for
the special case of a 1-legged caterpillar. A reader interested in
the results and physical implications may skip to Section 1.3.

1.2.1 Set up: partial differential equations to be coarse-
grained. The set of stochastic eqn (1)–(3) defines a Markov
process that is conveniently studied via the Fokker–Planck
equation and its adjoint, the Kolmogorov backward
equation.53,61 Let p(x, l, t) = (pu(x, l, t), pb(x, l, t))T be the
probability density function of finding the system at time t
and positions x, l in the unbound or bound states. We obtain
from eqn (1)–(3) the Fokker–Plank equation

qtp = L*p, (4)

with L* = V *+ Q* where

V� ¼ diag

@l
k

g
ðl � l0Þ þ

kBT

g
@l

� �
þ kBT

G
@xx

ð@l � @xÞ
k

Gþ g
ðl � l0Þ þ

kBT

Gþ g
ð@l � @xÞ

� �
0BB@

1CCA;

Q� ¼ �qon qoff
qon �qoff

� �
;

with an appropriate initial condition. Additionally we require
the flux in either state to vanish at infinity, to conserve
total probability. The stationary solution of eqn (4) is

p ¼ e�bkðl�l0Þ
2=2

Z
qoff ; qonð ÞT where Z is a normalization constant.

This is therefore the equilibrium probability density of the
system; it satisfies detailed balance.

Fig. 2 1-Legged nanocaterpillar model. (A) The longitudinal extension of
the single leg (l) is monitored and feeds back into the longitudinal position
(x) of the particle. (B) Simulation trace of the position of a 1-legged particle
with time. (inset) The effective long time diffusion Deff is half the slope of
the mean squared displacement over long times.
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While probability densities have an intuitive physical mean-
ing, in the following it will be easier – and mathematically
better posed – to consider the adjoint of the Fokker–Planck
equation and the corresponding dual functions. These are
functions f ðx; l; tÞ ¼

Ð
pðx0; l0; tjx; lÞgðx0; l0Þdl0dx0 that give the

expectation of any scalar function g(x(t), l(t)), given an initial
condition x(0) = x, l(0) = l. Once we know how such functions f
evolve, we may calculate any statistic g of our stochastic
process. Writing f (x, l, t) = ( fu(x, l, t), fb(x, l, t))T, we have that
f satisfies the Kolmogorov backward equation61

qt f = Lf, f (x, l, 0) = g(x, l). (5)

Here L is the adjoint operator of L*, defined by the operator
that satisfies h f, L*pi = hLf, pi for any probability density p
and statistic f, where f ; ph i ¼

Ð Ð
fupu þ fbpbð Þdldx is the inner

product.
1.2.2 Non-dimensionalization and assumptions on scales.

We now seek to coarse-grain the fast dynamics, by applying
homogenization techniques to the backward equation, eqn (5).
To start, we non-dimensionalize the equation using

x - Lxx̃, l � l0 - Ll̃, t - tt̃,

where L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=k

p
is the reference length of the leg fluctua-

tions, Lx is the scale for the long-time average motion of x,
and t is the timescale associated with this average motion.
The latter two scales are not determined a priori by any
intrinsic scales in the system, but rather are chosen large
enough that averaging will be appropriate over such scales;
hence we choose Lx = L/e where e { 1 is a small non-
dimensional number. We are interested in long time scales
corresponding to the diffusion of the particle, hence we

expect t = Lx
2/D0, which corresponds to t ¼ 1

e2
G
k

. Impor-

tantly, and in contrast with other works,22,51 here e does
not measure the value of physical parameters, but rather, it
measures the large observation time scale over which the
coarse-grained model is valid. Such long observation times
are quite likely in experiments, as typical binding rates
and leg dynamics occur at most over 1 ms to 1 s while
observation (or other biophysical processes such as inter-
nalisation for viruses17) happens over the course of 10 min
at least.38 This non-dimensionalization step is crucial as it
will allow us to find order of magnitude changes in the
diffusion coefficient according to the physical parameters,
something that was not captured by previous perturbative
approaches.22,51

We now assume that the observation time scale is long
enough, such that binding and unbinding events, as well as
relaxation dynamics, will both occur on comparably short time
scales. We can therefore write q̃i = qiG/k = Oe(1) and g/G = Oe(1).
In Section 3 we will see that taking different limits for these
physical parameters (such as g/G { 1) yields the same result as
applying these limits to the final result. Our choices of scalings
are therefore quite general and can be easily adapted to more
detailed systems.

Using non-dimensional variables (and dropping the e: for
simplicity) we obtain from the backward equation eqn (5) a
separation in orders of e as

@t f ¼Lf ¼ 1

e2
L0 þ

1

e
L1 þL2

� �
f (6)

where

L0 ¼
�qon þ

G
g
ð�l@l þ @llÞ qon

qoff �qoff þ
G

Gþ g
ð�l@l þ @llÞ

0BBB@
1CCCA;

L1 ¼ diag 0;
G

Gþ g
l@x � 2@lxð Þ

� �
;

L2 ¼ diag @xx;
G

Gþ g
@xx

� �
:

1.2.3 Homogenization method. We seek a solution to
eqn (6) of the form f = f0 + ef1 + e2f2 +. . . We obtain a hierarchy
of equations at different orders in e:

Oe
1

e2

� �
: L0 f0 ¼ 0; (7)

Oe
1

e

� �
: L0 f1 ¼ �L1 f0; (8)

Oeð1Þ: L0 f2 ¼ @t f0 �L1 f1 �L2 f0; (9)

..

. ..
.

and we solve these iteratively for f at each order in e. At lowest
order we obtain from eqn (7) and the vanishing flux at bound-

aries, f0 ¼ aðx; tÞ 1
1

� �
, where a (x, t) is an unknown function of

the slow variable x, whose dynamics we seek to determine. The
associated equilibrium distribution at lowest order, L�0p0 ¼ 0 is
simply the full one p0 = p.

At the next order, one can check that

f1 ¼
gqon

Gþ gqon

� �
l@xa

Gð1þ qoffÞ þ gðqon þ qoffÞ

is a particular integral of eqn (8), and is the unique solution
since we impose that f1 does not contain terms in the nullspace
of L0.

Finally eqn (9) possesses a solution if and only if it satisfies
the Fredholm alternative53

h(qt f0 � L1 f1 � L2 f0), p0i = 0.

Standard algebra yields an effective long time diffusion equa-
tion for a (in dimensional variables)

qta = Deffqxxa, (10)
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where

Deff ¼
kBT

Geff
; (11)

with

1

Geff
¼ p0

G0
þ p1

G1
; with G0 ¼ G; G1 ¼ Gþ geff and

geff ¼ gþ k
1

qoff
þ g
k

qon

qoff

� �
:

(12)

In the above expressions, p0 ¼
qoff

qoff þ qon
is the equilibrium

probability to have no bond, and p1 = 1 � p0 the equilibrium
probability to have one bond. G0 = G is the friction in the
unbound state and G1 is the effective friction contributing to
the bound state.

Eqn (10), which is the backward equation for the particle +
leg over long times, is one of the main results of this paper, in
the case of a 1-legged caterpillar. It is the backward equation for
a particle that evolves as

dx

dt
¼

ffiffiffiffiffiffiffiffiffiffiffi
2Deff

p
ZxðtÞ: (13)

That is, the particle diffuses, with effective diffusion coefficient
Deff and effective friction Geff. The effective diffusivity and
friction have the usual interpretation. In particular, if a
potential U(x) were added to the particle eqn (2) and (3), one
would recover in eqn (13), following the same coarse-graining

procedure, a term � 1

Geff
@xU.

In Fig. 3 we compare the analytical result obtained in
eqn (12) (gray line) to numerical simulations of the full sto-
chastic eqn (1)–(3) (gray dots). We show the results for a
number of system parameters and find perfect agreement over
several orders of magnitude of physical parameters. We also
predict order of magnitude changes in the diffusion coefficient
as the microscopic parameters change.

1.3 Microscopic parameters determine long term diffusion

How shall we interpret the expressions for the effective diffu-
sivity eqn (11) and the effective friction eqn (12)? The effective
diffusivity is a weighted sum of the diffusivity in each state, Deff

= p0D0 + p1D1 where the weights correspond to the probability to
be in either state, and Di = kBT/Gi. The effective friction, on the
other hand, is a harmonic weighted sum of the friction coeffi-
cients. That the diffusivity averages arithmetically is to be
expected, since the mean squared displacement is an extensive
quantity in a system with multiple states. Over a time t we can
write

x2ðtÞ ¼ 2Deff t ¼ 2D0p0tþ 2D1p1t

¼ 2D0t0 þ 2D1t1 ¼ x2ðtÞ
���
0
þx2ðtÞ

���
1
;

where t0 and t1 refer to the time spent in either state. The
novelty here is that the diffusivity in the bound state,

D1 = kBT(G +geff)�1 a kBT(G + g)�1,

is obtained not just from the friction in the bound state, see
eqn (12), but is modified by spring resistance during binding
events by an additional term geff � g.

We can interpret this additional term by writing it as

geff � g = kteff, where teff = tb + trelax
u

is the typical time over which the leg’s spring resistance acts,
with tb= 1/qoff representing the average bound time, and trelaxu ¼
g
k

qon

qoff
¼ g

k

tb
tu

representing the bare relaxation time g/k increased

by the ratio of average bound time to average unbound time.
This is coherent as the leg fluctuations may only relax in the
unbound state. The interpretation of teff is comparable to that
in ref. 54 although the results of ref. 54 were obtained from
underdamped dynamics.

Fig. 3 shows how the effective diffusion coefficient depends
on microscopic parameters such as the leg friction and binding
rates. As the leg friction g increases, the effective diffusion of
the particle decreases (Fig. 3-A). When the leg friction g is large
compared to all other contributions to friction, diffusion in the
bound state is frozen D1 = 0, and the effective diffusion
corresponds only to mobility in the unbound state Deff = p0D0

(p0 = 0.8/1.8 C 0.44 in Fig. 3A). As leg friction is typically
proportional to the size of the legs, it is thus expected that the
bigger the legs, the slower the particle. As the unbinding rate
qoff decreases, Deff decreases to arbitrarily small values (Fig. 3B).
This slow down is due to spring recoil forces acting over longer
times, eventually freezing the particle in a given location. Note
that similar qualitative dependencies of the diffusion coeffi-
cient on the unbinding rate (Deff B kBTqoff/k) were noted in a
numerical model of multivalent transport on discrete sites,44 in
a scaling law investigation of sticky reptation in polymers,62

and experimentally in Influenza A viruses.19

As a test of modeling choice, the analytical expression may
also be plotted against numerical simulations of the non-
dimensional equations with any value of e. We find perfect

Fig. 3 Effective diffusion Deff of a 1-legged particle. Simulation and
analytical result eqn (12) for a 1D system with 1 leg, with respect to (A)
friction ratio g/G and (B) unbinding rate qoff. (A and B) Share the same y-
axis. The other numerical parameters are qonG/k = 1.0, and for (A) qoffG/k = 0.8
while for (B) g/G = 0.1. Error bars represent one standard deviation for
100 independent runs.
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agreement up to e t 10 (Fig. S1, ESI†), regardless of the choice
of physical parameters. This highlights that the natural choice
e = L/Lx for coarse-graining purposes, corresponding to bound
leg length scales versus unbound particle long range motion, is
especially well suited for these types of problems. In the
following e is not incorporated in numerical simulations.

1.4 Diffusion of N-legged caterpillar spans orders of
magnitude

We extend our framework to probe nanocaterpillar dynamics
with an arbitrary number of legs N (see Fig. 4A). Eqn (1) is
repeated for each unbound leg, and each leg binds to the
surface with rates qon, qoff independently. Eqn (2) gives the
particle dynamics when no legs are bound. When n legs are
bound, indexed by i = 1,. . .,n, the dynamics of the particle and
bound legs are constrained as (Supplementary 1.2, ESI†)

dx

dt
¼ �dli

dt
¼ k

Gþ ng

Xn
i¼1
ðli � l0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

Gþ ng

s
Z: (14)

Note here that the projection step yields a friction coefficient
scaling linearly with the number of bonds n, and hence is not a
perturbative effect.22 The set of stochastic equations is now
fully determined and can be simulated for any N, see Fig. 4B.

Similarly as in Section 1.2, coarse-graining predicts a long
time effective diffusion with N legs as (Supplementary 1.2, ESI†)

D
N legs
eff ¼ kBT

GN legs
eff

¼ kBT
XN
n¼0

pn

Gn
(15)

where

pn ¼
N
n

� �
qN�noff qnon

ðqoff þ qonÞN

is the equilibrium probability to have n bonds and Gn is the
friction coefficient in a state with n bonds. The frictions {Gn}
solve a linear system of equations that does not have a simple
analytical solution (see eqn (S1.20)–(S1.22), ESI†), but can be
solved using numerical linear algebra for given parameters as
reported in Supplementary 1.2 (ESI†).

Eqn (15) is one of the main results of this paper. It predicts
the long-term diffusion coefficient of a nanocaterpillar, as a
non-trivial function of the microscopic parameters of the legs.
We compare the numerically solved eqn (15) (full lines) to
numerical stochastic simulations with N legs (dots) in Fig. 4B
and find excellent agreement.

The coefficients Gn contributing to each bound state can be
further investigated to yield an analytical approximation for
GNlegs

eff . When a large number of legs N is involved in the process,
the dominant term in the sum of eqn (15) corresponds to the

average number of bonds Nb ¼
PN
n¼0

npn ¼
qon

qoff þ qon
N. Further-

more, one expects that the coefficients vary weakly around n =
Nb, simplifying the linear system for the {Gn}, yielding

1

GNlegs
eff

’
N�1

1

GNb

¼ 1

GþNbgeff
: (16)

The right hand side of eqn (16) is valid regardless of parameter
values (Fig. S3, ESI†) and provides a good approximation for
GNlegs

eff for large values of N (Fig. S2, ESI†). For example, close
agreement with eqn (15) is obtained as early as N = 20, while
good qualitative agreement is obtained for N = 5 (see Fig. 4B,
dotted line). Eqn (16) shows that the effective friction with N
legs decays linearly with the average number of bonds Nb. For
systems with a large number of legs (and hence potentially a
large average number of bonds),31,38,39 we therefore expect a
strong diffusion decrease, covering potentially several orders of
magnitude, due to enhanced friction with the surface.

2 Do nanocaterpillars hop or slide?

Our model and analytical formula eqn (15) are useful not only
for quantitatively predicting the diffusion coefficients of exist-
ing nanocaterpillar systems, but also to obtain insight into the
mechanism by which particles diffuse. Different experiments
with DNA-coated colloids made puzzling and seemingly contra-
dictory observations, whereby similar systems appear to diffuse
in different ways. For example, some DNA-coated colloids
appear to diffuse through a succession of uncohesive moves,
namely hops above the surface,39 while others move cohesively
along the surface.31 The difference between cohesive and
uncohesive modes of motion has been noted in a variety of
other systems, ranging from virus mobility on surfaces17,19 to
sticky polymer reptation.62 Yet the parameters that characterize
and quantify these different modes of motion remain to be
elucidated. Our model gives insight into this question – do
nanocaterpillars prefer to diffuse by ‘‘sliding’’ along the sur-
face, or by ‘‘hopping’’ along it (see Fig. 5A) ?

Fig. 4 N-Legged nanocaterpillar model. (A) The longitudinal extension of
N legs are monitored (here N = 5) with binding and unbinding. The number
of bonds n(t) changes in time, here n(t) = 2. The average number of bonds

nðtÞ ¼ Nb depends on the binding and unbinding rates. (B) Simulations and
analytical results of the effective diffusion coefficient for N-legs according
to the binding rate qonG/k. ‘‘Nb average’’ corresponds to eqn (16) and
‘‘full solution’’ to eqn (15). The other numerical parameters are g/G = 0.1
and qoff = 0.8qon.
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2.1 What are hopping and sliding ?

We start by quantifying the diffusion associated with either
hopping or sliding. The mean squared displacement of a
particle whose diffusion coefficient is determined from
eqn (15) can be split into two contributions, as

x2
� �

¼ 2Deff t ¼ 2p0
kBT

G0
tþ 2

XN
n¼1

pn
kBT

Gn
t

� 2Dhoptþ 2Dslidet:

We identify (a) a hopping mode (in accordance with ref. 34
and 39) where the particle detaches all bonds with the surface
and moves in free space (see Fig. 5A), until it forms another
bond. In this hopping mode

Dhop ¼ p0
kBT

G
¼ qoff

qoff þ qon

� �N
kBT

G
: (17)

We also isolate (b) a sliding mode (see Fig. 5A) where the
particle keeps at least one bond with the surface, a form of
walking with no preferred direction,

Dslide ¼ kBT
XN
n¼1

pn

Gn
’ kBT

GNb

¼ kBT

GþN
qon

qoff þ qon
geff

: (18)

The total mean-squared displacement can be broken up
into the sum of the mean-squared displacement when
hopping, and the mean-squared displacement when sliding,
as hx2i = 2Dhopt + 2Dslidet = hx2ihop + hx2islide.

An important observation is that Dslide decays with the
number of legs roughly as 1/N, while Dhop decays exponentially
with N, i.e. much faster. As soon as a few legs are involved, we

may therefore expect that sliding dominates hopping. This
interpretation is natural, since when a system has just a few
legs (N C 1–2), the odds that the legs all detach at once are
quite high, therefore favoring hopping. In contrast, in a system
with a large number of legs, the odds that all legs simulta-
neously detach are simply too small, and the system walks
randomly, remaining close to the surface. In a sense, nanoca-
terpillars truly are caterpillars walking with nanoscale legs. The
scaling quantifying both modes of motion is another essential
analytical result of our work.

In general, the critical number of legs Nc(qon, qoff, k, g, G)
required to favor sliding (N Z Nc) over hopping (N r Nc)
satisfies

hx2ihop
hx2islide

¼ Dhop

Dslide
¼ qoff

qoff þ qon

� �Nc

1þNc
qon

qoff þ qon

geff
G

� �
¼ 1: (19)

The critical number of legs is controlled by the ratio qon/qoff,
termed henceforth stickiness, and by the magnitude of the
effective friction in the bound states geff, itself dominated in
most systems by the unbinding rate qoff. We can therefore
investigate Nc as a function of stickiness qon/qoff and unbinding
rate qoff (Fig. 5B). Overall, a system with say N = 10 legs is
typically dominated by sliding motion. Yet hopping may still
occur e.g. with large unbinding rate qoff. In fact qoff increases
the friction geff in the bound states and reduces Dslide. The
number of legs is thus a critical parameter for nanocaterpillar
diffusion: controlling both the magnitude of the diffusion
decrease and the mode of motion.

2.2 Distinguishing the diversity of biophysical
nanocaterpillars

Whether a nanocaterpillar slides or hops, as predicted by
eqn (19), depends on numerous system parameters. Existing
biological and biomimetic systems cover a broad range of
parameters that we now explore, to ask which systems prefer
to move by sliding and which by hopping, within the frame-
work of our model.

Our model relies on 6 physical parameters k, g, qoff, qon, G, N
that can be estimated from the literature for many systems:
viruses, molecular motors, white blood cells, protein cargos in
the nuclear pore complex, bacteria such as Escherichia coli, and
DNA-coated colloids (Table 1 and Supplementary 3, ESI†).
Typically, stickiness values are similar across systems with
qon/qoff B 0.05–0.8 – when the system is not thermally manipu-
lated as will be explored in Section 2.3. Therefore we consider
qon/qoff C 0.1. Additionally, as legs are generally small com-
pared to particles, g/GC 10�3–10�1 and therefore the dominant
factor in geff/G is usually controlled by spring recoil force and
unbinding times, as k/Gqoff. We find k/Gqoff C 10�2–108 in the
range of systems studied, confirming that this is a critical factor
to discriminate nanocaterpillars. Additionally, as systems have

Fig. 5 Nanocaterpillar diffusion modes with N legs. (A) Typical modes of
motion with N bonds: the nanocaterpillar may either slide (at least one
bond remains attached to the surface) or hop (all bonds detach for the
particle to move). (B) Critical number of legs Nc required for sliding to be
more effective than hopping as a function of stickiness qon/qoff and
unbinding rate.
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a varied number of legs N, we define an effective relaxation rate

kðNÞ

G
¼ k

G
N

qon

qoff þ qon

qoff þ qon

qoff

� �N

�1
" #�1

that will allow us to predict either sliding or hopping.
We sort systems in a so-to-speak Ashby chart, according to

the effective relaxation rate k(N)/G and unbinding rate qoff

(Fig. 6). This chart summarizes parameter ranges for different
systems, and predicts which systems move by sliding and
which move by hopping, within the assumptions of our model.
If k(N)/Gqoff r 1, according to eqn (19), sliding (orange region) is
favored over hopping (blue region). While other modes of
motion could occur for such complex systems, our aim here
is to observe these systems in the ‘‘projected’’ sub-space where
only sliding and hopping is considered. Interestingly, we find
that different groups of systems emerge according to this
classification, that we review below.

2.2.1 Sticky hoppers. We predict that viruses, white blood
cells, and molecular motors cannot slide. These systems show
very long bond lifetimes, with toff = qoff

�1 C 1–100 s. This is
characteristic of strong bonds, for which the interaction energy
|DG| c kBT. Since for the protein ligands in these systems, k C
10�4 N m�1 and GC 10�9 N s m�1 for 1 mm particles, we expect
k/G C 105

c qoff and g eff c G. Therefore such systems simply
can not slide. Sliding is even more disfavored for coronaviruses
(Sars CoV 1 and 2), since the legs are made of very rigid
proteins, with k C 0.5 N m�1.63,64 Hopping is therefore a
probable mode of motion for these systems.

These predictions are qualitatively consistent with experi-
mental measurements. The diffusion coefficient of an influenza
A virus on protein-coated surfaces was measured as D0/Deff C
4–190.17,19 Estimating the typical number of available legs N C
1065,66 and the bound probability qon/(qon + qoff) = 20%65 yields
D0/Dhop= [qoff/(qon + qoff)]

N C 10, in the range of measured
values. Our model predicts that hopping is therefore more
probable than sliding for influenza A, at least when considering
its translational motion under passive binding and unbinding.
This is consistent with ref. 17, which observed infrequent yet
very long spatial steps, termed gliding moves. We note that the
influenza A virus has also been observed to move via cohesive
short spatial steps, that have been attributed to rolling
motion,5,17,19,41 which may be due in this context to active bond
cleaving17,19,41 that is beyond the scope of passive binding as
presented here. Turning to DNA-coated colloids, while the
binding kinetics are roughly independent of colloid size, the
effective relaxation rate can vary strongly. Nanometre-sized
DNA-coated colloids (yellow nanoparticles) have fast relaxation
rates as they are small (and therefore G is smaller), and are thus
sticky hoppers. In contrast, micronscale colloids have slower
relaxation rates k(N)/G, all the more as usually a great number of
bonds N C 100 are involved in the binding process, and thus
are prone to slide. We will turn in more detail to DNA-coated
colloids in Section 2.3.

2.2.2 Slippery sliders. Reciprocally, we predict that systems
with weak adhesion (equivalent to short bond lifetimes, i.e.
large qoff) may move by sliding. Such systems include proteins
translocating through the nuclear pore complex, or white blood
cells adhering through L-selectin linkers, which are notably
weaker than P-selectin.23 Sliding may also be accessible to
systems with short effective relaxation rate, for which the sticky
friction mediated by k/G is low. This corresponds to large
particles with long legs, as is the case for Escherichia Coli57

(dark green). DNA-coated colloids with high DNA coverage are
prone to slide due to their large number of legs.

2.3 DNA-coated colloids hop and slide, with order of
magnitude decrease in their diffusion coefficient

We now turn to probe in more detail the predicted modes
of motion and strong decrease in diffusion of DNA-coated
colloids by comparing our model’s predictions with experi-
mental measurements of DNA-coated colloids. DNA-coated
colloids provide a well-controlled model system for testing
our analytical results, especially their dependence on N, since
the number of DNA legs involved in the sticking process may be
easily tuned by changing the temperature.38 Our aim here is not
to build a detailed model to describe all the possible modes of
motion of DNA-coated colloids. Rather, we seek potential key
parameters that control the magnitude of the diffusion and the
mode of motion. To do so, we test whether the predicted strong
decrease is coherent with experimental observations over a
range of temperatures and for three different experimental
designs.

2.3.1 Model parameters can be directly established from
experimental data.. We predict the diffusion coefficients Deff

Fig. 6 Sorting biophysical systems. Expected regimes of sliding or hop-
ping according to the effective relaxation rate k(N)/G and unbinding rate
qoff. The gray line corresponds to k(N)/G = qoff and separates the sliding
and the hopping regions. Circles represent the range of values found in
the literature for parameters of each system. Systems are color coded
according to their category in the legend. When multiple systems belong
to a category, details are indicated next to the circles. Low and high
coverage DNA-coated colloids refer to 1 mm size colloids and nano-
particles to 15 nm size.
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(and Dslide and Dhop) for three different experimental sys-
tems, by determining the parameters involved in eqn (15)
from the literature or from independent measurements, with
no fitting parameters (apart from calibrating to the melting
temperature, as discussed below). The diffusion coefficients
for DNA-coated colloids on flat DNA-coated surfaces have
been measured in two different experimental systems
reported in the literature.31,39 These studies report only very
few data points around the melting temperature where
motion is diffusive, since in these experimental systems
diffusive motion is only observed in a narrow range of
temperatures, so the studies focused mainly on the low
temperature regime where motion is subdiffusive. We com-
plemented the scarce existing data by performing our own
experiments, using recently-developed fabrication38 and
acquisition techniques,31,39 and we observe diffusive motion
over a wider range of temperatures (Supplementary 2, ESI†).
For each of the three experimental datasets, we map reported
experimental parameters to the parameters of the model, and
detail our process below.

Some parameters are easily estimated using standard
results, see Table 1. The friction coefficient G is measured at
high temperatures where the colloid is always unbound and
corresponds to hindered lateral hydrodynamic friction near a
wall;66 g and k correspond to hydrodynamic friction and spring
resistance of the polymer linker (that links the surface and
the complementary DNA strand) and are directly established
from polymer dynamics.56 The binding rate qon depends on the
exact – known – DNA sequence used for the complementary
stickers and the density of coated DNA strands on surfaces.69

Other parameters, such as N and Nb (or equivalently N and
the ratio qon/qoff) require more extensive modeling of the
detailed leg-arm interactions to be evaluated. Recently ref. 38
and 59 have shown how to establish N and Nb with no fitting
parameters, taking as input parameters the DNA sequence
used, the coating densities, and the properties of the DNA
linker (see Fig. S5, ESI†), and we employ the method we have
developed in ref. 38.

Finally, since measurements include colloid vertical motion
beyond the binding range,‡ we further include vertical motion
and hence particle buoyancy through a 2 � 1D model. Such
vertical motion is generally slow and only affects the effective
probabilities pn, not the friction coefficients Gn. Motion in two
lateral dimensions can be straightforwardly extended from our
1D model (see Supplementary 2 for more details, ESI†).

All parameters are thus readily expressed from detailed
experimental system design. The diffusion coefficient Deff is
decreased by orders of magnitude at low temperatures. It
progressively increases to its ‘‘bare’’ value – corresponding to
non-sticky DNA – at high temperatures, with a sharp transition.
This sharp transition from the bound to unbound state occurs
at a melting temperature Tm specific to each experimental
design. The predicted Tm is always close to the experimentally
measured Tm (less than 1 1C difference) with no fitting
parameters.

Nonetheless, intrinsic variations remain in experimental
parameters. In particular, different e.g. humidity conditions
can affect the coating process and exact coating density
obtained, and hence the experimental Tm, over about 2 1C. To
investigate data over the relevant short temperature range
where diffusion can be measured, one option could be to fit
e.g. the value of the coating density on colloids, to obtain the
exact experimental Tm – effectively fitting the location of the
sharp transition. Instead, we choose to align all data (theore-
tical or experimental) with respect to its own melting point Tm

(predicted or measured). This has the advantage of avoiding
fitting and allowing us to easily compare similar experimental
systems with slightly different Tm (Supplementary 2, ESI†).

2.3.2 The coating density controls the mode of motion and
the magnitude of the diffusion coefficient decrease. The num-
ber of legs implied in the sticking process N changes signifi-
cantly with temperature. At low temperatures N \ 100; the
colloids are strongly bound. With increasing temperatures N

Table 1 Method used to calculate model parameters for the DNA-coated colloids studied experimentally in this work. Parameter values are reported
only at the melting temperature Tm. Their dependence on temperature is indicated in the ‘‘Comments and References’’ column

Parameter and formula Value at Tm Comments and references

G 9.1 � 10�9 N s m�1 Measured at high temperature close to the surface (when all DNA linkers are unbound). Here
g6pZ(T)R C 2 (where R = 500 nm is the colloid radius and Z(T) water viscosity around the
melting temperature), which is consistent with reduced hydrodynamic friction near a surface
at a distance of about 2h/R.66 Considered independent of temperature in the range of
experimental measurements

g = 6pZ(T)h 1.8 � 10�10 N s m�1 With brush height h C 22 nm, calculated with Milner–Witten–Cates theory,67 and
accounting for increased brush density due to Pluronic F127 (see ref. 38)

k = 3kBT/2Lc 0.16 mN m�1 Spring constant for polymers;56 extended brush length L C 84 nm (6500 g mol�1 PEO +
20 single stranded DNA (ssDNA) bases); persistence length c = 0.5 nm (average of PEO +
ssDNA at 140 mM salt concentration68)

qon = kon�s/hNA 4 kHz Where kon = 1.6 � 106 M�1 s�1 from ref. 69, using the exact sequence as in our experiments;
�s ¼ ffiffiffiffiffiffiffiffissg
p where s = 1/(3.27 nm)2 is the particle coating density and sg = 1/(10.8 nm)2 is the

glass substrate coating density; Avogadro’s number NA; independent of T

qoff ¼ qon
NðTÞ �NbðTÞ

NbðTÞ
18 kHz Nb average number of bound legs and N total number of legs available for binding in the

interaction region; Dependent on T

‡ The binding range is about 20 nm, but this is not optically removable as the
vertical resolution is about 200 nm.
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decreases until the particles are completely unbound and N = 0
(see Fig. S5, ESI†), with a sharp transition at the melting
temperature Tm. Importantly, the number of legs is the para-
meter that changes the most with temperature and controls
therefore the magnitude of the long time diffusion Deff.

The three experimental systems differ mainly in the DNA
coating density, which implicitly controls the number of legs N
involved in the binding process. For densely coated colloids
(Fig. 7A and B), we find excellent agreement between our model
calculation for Deff and experimental data, predicting a fast
diffusion decrease over 2 orders of magnitude in barely a few
temperature degrees. Further, we predict that sliding, or
some form of cohesive motion with the surface, is the
dominant mode of motion below the melting temperature
Tm. In fact the high number of available legs, N C 100, due to
high coverage, prevents hopping below the melting tempera-
ture and colloids primarily slide, consistent with the
observed cohesive motion.31 Hopping emerges as a favorable
mode above the melting point, where the average number of
available and bound legs significantly decreases due to
particle lift-off from the surface. This prediction is consistent
with our qualitative observations above the melting point:
particles perform long moves over short time intervals,
accompanied by more frequent and longer excursions far
from the surface. The transition between motion modes
occurs for about N = 40 legs in contact (Fig. S5, ESI†).

For DNA-coated colloids with low coverage densities, as in
ref. 39 (Fig. 7C), our model predicts a diffusion coefficient that
is far too large. Yet, Dhop is in remarkable agreement with
experimental data. In fact, Deff contains sliding motion yet the
spacing between legs in ref. 39 is too large and geometrically
prevents sliding. Hence only hopping, or uncohesive motion
with the surface, is possible. In fact, for such systems only
hopping is observed, resulting in a much stronger slow down of
diffusion with decreasing temperature.39 The DNA coating
density therefore appears to be a significant factor in determin-
ing how DNA-coated colloids move, allowing it to vary from
sliding to hopping.

2.3.3 Other possible modes of motion. There are other
ways that DNA-coated colloids could move in specific experi-
mental regimes, that could be probed with the analytical tools
set forth here, yet that we have not yet explored. At lower
temperatures, particles don’t diffuse, they rather
subdiffuse,31,39 potentially due to inhomogeneities in the
coated surfaces.31,39,42 Such spatial dependencies are not
accounted for in our model but could be studied through
spatially dependent attachment rates qon(x) or leg number N(x).

Particles may also move by rolling instead of by sliding,31 a
motion that could also be investigated with homogenization
techniques. Rolling may have a higher mobility at some
temperatures,33,54 since the strands closest to the contact point
on the surface do not resist rolling, for geometrical reasons. Yet
when a large number of bonds are implied in the binding
process, numerous bonds are actually far from the contact
point and hence resist rolling. It is possible that rolling is thus
favorable only over a small range of temperatures.

Although our model lacks these more complex ingredients
and geometries, it is in surprisingly good agreement with our
experimental measurements. This suggests we have identified
some critical parameters controlling the observed effective
diffusion, precisely the coating density and working tempera-
ture as they set the number of legs N. Even in a more complex
model, containing e.g. inhomogeneous coating density, or
rotational degrees of freedom, we therefore expect these para-
meters to play an important role in mobility.

2.4 Design rules for sliding versus hopping

Herewith we can draw simple design rules for sliding or
hopping. Numerous, long wobbly legs with weak adhesive
bonds are well adapted for sliding. Short and stiff legs with
strong adhesive bonds facilitate hopping. DNA-coated colloids
offer various design features to control their mobility: for
example, larger particle size, higher DNA coverage, and lower
temperature all favor sliding. Further control can be achieved
by tuning the microscopic features of the legs, such as their

Fig. 7 Diffusion coefficients of DNA-coated colloids. Comparison
between experimentally measured diffusion coefficients of DNA-coated
colloids on DNA-coated surfaces and analytical predictions of Deff, Dslide,
and Dhop (eqn (15), (18) and (17)). The DNA-coated colloids have (A) highly
dense coatings (1 DNA per 10 nm2, Supplementary 2, ESI†) (B) dense
coatings (1 DNA per 27 nm2) from ref. 31 and (C) sparse coatings (1 DNA
per 144 nm2) from ref. 39. In (A) the gray region corresponds to uncer-
tainties on the coating density of the substrate, and the different symbols
correspond to repeated experiments repeated. The hydrodynamic diffu-
sion D0 = kBT/G corresponds to lateral diffusion near a flat rigid wall.66

Horizontal error bars correspond to uncertainties on imposed temperature
and vertical error bars correspond to uncertainties in determining the
diffusion coefficient from data (Supplementary 2, ESI†).
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spring constants k, for example by choosing the length of the
ligand leg.38 However, such control is especially hard to achieve
experimentally without changing other experimental features at
the same time. For example, current coating processes gener-
ally result in less dense coatings for longer legs.38

Overall, these design rules allow one to tune artificial
systems to control their mobility. This could have conse-
quences in particular in the field of self-assembly of artificial
structures, where facilitated cohesive motion is believed to be
essential for long-range alignment.31–33

3 Coarse-graining under different
models and assumptions

In the physical and biological systems we explored, the range of
physical parameters was quite broad, suggesting that other
scaling ansätze might be appropriate to study long term
dynamics. We review alternative approximations and modeling
assumptions and compare them to the predictions of the
model presented in Section 1. We find that our model is the
most general, encapsulating perturbative results obtained with
other approximations, and that it is naturally modified to
account for additional features (such as arms as well as legs).
To make the argument simpler, we mainly focus on a 1-legged
caterpillar; the comparisons should be similar for a multi-
legged caterpillar. Detailed coarse-graining steps are reported
in Supplementary 4 (ESI†). All results are summarized in
Table 2 (displayed in the Appendix) and compared in Fig. 8.

3.1 Dynamics with inertia

One may include particle inertia with a small yet finite mass
m a 0, by starting with the underdamped Langevin equations
for the particle (rather than the overdamped as we have done) –

see ref. 54. To understand the scales associated with mass, one
can compare the correlation time of the particle’s velocity when

spring recoil forces are at play, tv ’
mðLx=tÞ

Lk
, to the time scale

of observation t.54

Coarse-grained dynamics require
tv
t
¼ mLx

Lkt2
¼ OðeÞ, which is

apparently coherent with a small mass. Coarse-graining steps
(Supplementary 4.1, ESI†) lead to an effective friction

Gm
eff = p0G0 + p1G1. (20)

Notice that the effective friction is the arithmetic sum of the
frictions in each state – not the harmonic sum obtained in
eqn (12).§ Eqn (20) is equivalent to eqn (12) in the limit where
the friction correction is small, geff { G – see Fig. 8B (yellow).

However, differences arise beyond this regime. For stiff
legs (g/G c 1, k/qoff c 1) one finds Gm

eff B 0 while Geff B G.
This stark difference has an intuitive explanation: the
particle may not move when it is attached with the stiff leg,
but it can still move when it is unbound, and therefore
the effective friction should remain finite. This is true unless
the particle has significant inertia and therefore does not
have the time to accelerate within the unbound periods. In
fact, in the non-dimensionalization we implicitely assumed
that m/G = eLkt2/GLx = G/ke2, such that the inertial relaxation
time was in fact assumed to be large compared to the time scale
of velocity fluctuations.

This drives the general question of how to account for
inertia in such systems, and whether inertia plays a role in
the macroscopic diffusion of nanocaterpillars. We will address
this question thoroughly in another paper,70 in which we
reconcile eqn (20) and (12).

3.2 Choice of time-scale hierarchy

There are other choices for the ordering of time scales. We
review these below: we describe their experimental relevance,
then briefly examine the effective friction under these different
approximations and compare it to our main result eqn (12).

3.2.1 Fast leg dynamics compared to particle dynamics.
One common approximation is to assume rapid leg dynamics
compared to particle dynamics, with e = g/G.51 Such an approxi-
mation is consistent with numerous experiments, as legs are
typically short, hence fast because of Stokes relation, compared
to the large particles investigated (such as white blood cells7 or
DNA-coated colloids71).

With this assumption one typically relaxes the restriction on
lengthscales, as L B Lx. The observation time-scale is t = L2/D0 =
G/k and binding and unbinding are taken to be fast compared
to this time scale, qon B qoff B 1/te. One obtains (Supplemen-
tary 4.2.1, ESI†)

1

Ge¼g=G
eff

¼ p0

G
þ p1

G
1� geff

G

� 	
: (21)

Eqn (21) results in a small correction to the effective friction, of

Fig. 8 Comparing with other coarse-grained models and assumptions.
(A) Schematic for arm and leg dynamics considered in this work. (B)
Effective diffusion with respect to friction ratio g/G: calculated with
eqn (12) (‘‘This work’’), eqn (20) (‘‘underdamped’’), eqn (21) (‘‘scaling
e = g/G00) and eqn (22) (‘‘k/gc qon, qoff’’). (C) Effective diffusion with respect
to binding and unbinding rates (keeping qon/qoff constant), for a particle
with 1 leg facing M = 1–50 arms: calculated with eqn (25) (‘‘This work’’) and
eqn (22) (‘‘k/g c qon, qoff’’), taking p0 = 0 and p1 = 1 to match the limits in
M - N. Ref. 51 corresponds both to k/g c qon, qoff and g/G = e and was
plotted for consistency. For (A) and (B), shared numerical parameters are
qonG/k = 1.0, qoffG/k = 0.8 and g/G = 0.1.

§ Eqn (20) corresponds to the result derived in ref. 54, with in addition projected
dynamics for the bound state, and base friction of the particle (Ga0)
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order e. It is equivalent to eqn (12) in the limit where geff { G
is small. The assumption e = g/G appears thus quite restrictive
as it implicitly also requires to observe the system at
long time scales compared to the other time scales in the
system. Furthermore, contrary to eqn (12) where the small
parameter e disappears, here 1/Ge=g/G

eff is a first order expansion
in e B geff/G. We present eqn (21) against eqn (12) in Fig. 8B
(purple vs. black) and find that eqn (21) is indeed only valid for
small values of g/G. Our choice of scaling e = L/Lx can thus
account for a broad range of bare friction values. Additionally,
such an approach can only account for small perturbations to
the background mobility, while we find perturbations over
several orders of magnitude.

3.2.2 Fast leg dynamics compared to binding dynamics.
Another approximation assumes fast leg relaxation dynamics
compared to binding dynamics, k/g c qon, qoff (and both are
fast compared to particle dynamics). In this case leg lengths are
sampled from their equilibrium distribution when they bind,
corresponding to a ‘‘pre-averaging’’ approximation. Leg lengths
are not tracked when they are unbound, allowing to speed up
simulations.22,33,51,72 This limit is relevant to describe stiff legs,
e.g. rigid polymers such as double stranded DNA – see Table S1
(ESI†).

Coarse-graining gives (Supplementary 4.2.2, ESI†)

1

Gk=g�q
eff

¼ p0

G
þ p1

Gþ gþ k

qoff

: (22)

The pre-averaged result eqn (22) is comparable to eqn (12), yet
misses the relaxation term involving trelax

u in geff. This confirms
that trelax

u originates from unbound relaxation dynamics. This
difference results in some differences in Deff, depending on the
microscopic parameters (Fig. 8B). Additionally, the pre-
averaged limit may be viewed as the limit regime for a nano-
caterpillar with a large number of legs, say N c 1, where on
average 1 or 0 leg is bound to the surface, Nb t 1. This typically
requires qon { qoff { k/g, and indeed eqn (15) converges to the
pre-averaged result in that limit (Fig. S4, ESI†).

The validity of pre-averaging is limited to the domain qon,
qoff { k/g. In systems such as DNA-coated colloids, binding
rates qon and qoff may be manipulated over orders of
magnitude,73 by choosing the DNA sequence or by adjusting
temperature, potentially accessing qon, qoff c k/g at low tem-
peratures. In this regime, eqn (12) predicts that the nanocater-
pillar is frozen in the bound state, while pre-averaged dynamics
still predict a non zero mobility. In these situations pre-
averaged dynamics are therefore not suitable. We show later
however that introducing numerous arms – more generally a lot
of binding partners – can extend the validity range of pre-
averaging.

3.2.3 Fast binding dynamics compared to leg dynamics.
Finally, one can consider fast binding dynamics compared to
leg dynamics, qon, qoff c k/g. Although this limit is not often
considered in simulations, it is relevant for dense arrange-
ments of receptor sites.71 In fact as the binding rate qon scales
linearly with the concentration of receptors, it can increase by

orders of magnitude for a leg potentially in contact with a dense
array of arms – see Table S1 (ESI†).

Coarse-graining yields (Supplementary 4.2.3, ESI†)

1

Gqfast
eff

¼ p0

G
þ p1

Gþ gþ k
g
k

qon

qoff

� � (23)

which is exactly what is expected in the limit qon, qon c k/g in
eqn (12). Again, this highlights the physical mechanisms yield-
ing the different contributions in geff. Here the average bound
time of the leg is small, tb { g/k, and therefore does not
contribute to geff.

3.3 Arms and/or legs

The diversity of nanocaterpillars resides also in their geometry:
some particles have legs that attach to a surface,74 some have
no legs (or infinitesimally small legs), with binding sites
directly on the particle that attach to outstretched receptors
on the surface that we refer to as arms22,51 (1 arm case in
Table 2) and some have both outstretched legs connecting to
outstretched arms33 (arms and legs in Table 2).

3.3.1 Arms or legs. A particle with a leg or a bare particle
attaching to an arm (1-legged and 1-armed respectively, see
Table 2) have nearly equivalent effective dynamics. The only
difference resides in the interpretation of G in the unbound leg
dynamics eqn (2) – see Supplementary 4.3.1 (ESI†). For the
1-legged case, if the leg’s center of mass corresponds to the
point grafted to the particle, the unbound friction coefficient is
simply increased by the leg as G - G + g, where G is the bare
particle friction coefficient and g the leg’s. If the leg’s center of
mass is offset from the grafting point on the surface, minor
modifications have to be made to eqn (2) yet lead to very similar
dynamics overall. For the 1-armed case, we simply have the
unbound friction coefficient G to be the bare friction coefficient
of the particle. This justifies our approach in Section I, where
we ignore the details of the leg or arm location and simply treat
them as mathematically equivalent.

3.3.2 Arm and leg. A 1-legged particle attaching to 1 arm
has slightly more interesting dynamics. To investigate this case,
we simplify the problem and consider that the leg can bind to
the arm regardless of their relative location, with a rigid rod of
length lbond that bridges the gap between the sticky points (see
Fig. 8A). In the bound state the constraint is thus x + lleg� larm = lbond.
The relative distance lbond is unimportant and can be assumed to be
zero, and therefore this model effectively creates an arm with the
correct length each time the leg binds.

Although the model is simplistic, it is realistic in the
presence of a dense periodic array of arms and allows us to
compare the mechanical properties of this geometry compared
to a single leg or arm. We find using similar coarse-graining
techniques (Supplementary 4.3.2, ESI†)

1

Glegþarm
eff

¼ p0

G
þ p1

Gþ geff;1ð1; 1Þ
where geff;1ð1; 1Þ ¼

geff
2
: (24)

The added friction in the bound state is only half that with a
single leg or a single arm: friction is distributed harmonically,
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like the effective spring constant of two springs in series.¶
Slightly improved mobility is therefore achieved with both an
arm and a leg, while the qualitative behavior of the original
model is preserved.

3.3.3 Leg facing numerous arms. We now consider a leg
that can bind to multiple arms at the same time. As in the
previous section, the M arms do not have particular locations
but rather appear with the correct lengths when needed. In that
case, the binding rate depends on the number of bound legs.
For a given leg, the effective binding rate is (M � n)qon, where n
is the current number of bound legs, such that M � n corre-
sponds to the number of available binding sites. The effective
unbinding rate of each leg remains qoff. Following the formal-
ism of arm and leg dynamics detailed above (Supplementary
4.3.3, ESI†) one finds that with M arms,

1

GlegþMarms
eff

¼ pM;0

G
þ pM;1

Gþ geff;1ðM; 1Þ (25)

where pM,0 = qoff/(qoff + Mqon) and pM,1 = 1 � pM,0 are the
probabilities to have 0 or 1 bond. The added friction geff,1 is a
harmonic average when M is large

1

geff;1ðM; 1Þ ’M�1

1

geff ;M;1

þ 1

geff ;1;1
; (26)

with geff;M;1 ¼ k
1

qoff
þ g
k

ðM � 1Þqon þ qoff

qoff

� �
the effective fric-

tion due to the leg and geff ;1;1 ¼ k
1

qoff
þ g
k

� �
due to arms. We

see that the factors implying the unbound relaxation time
trelax

u are modified in each case. We give the following interpreta-
tion: the average unbound time for the leg is tu = 1/(M� 1)qon, due
to M � 1 other available arms to bind to. For the arms, tu = N as
there are no other legs to bind to once the only leg is bound. The
harmonic average in eqn (26) highlights again that the leg-arm
configuration is mathematically similar to the effective force of
springs in series.

In the limit of a large number of arms M, the leg is always
bound to the surface (p1 = 1) and the correction to the bound
state friction converges to

geff ;1ðM; 1Þ �!
M!1

geff;1ð1; 1Þ ¼ gþ k

qoff
; (27)

which is the correction to the effective friction for the pre-
averaged result, eqn (22).

This limit is surprising. Section 1 and eqn (12) showed that
for a leg binding to a uniformly sticky surface, in the limit
where the leg is always bound ( p1 = 1), the nanocaterpillar is
frozen and Deff = 0. When the leg is bound to a great many arms
this is no longer the case: we recover the diffusion coefficient
associated with pre-averaging. We interpret this discrepancy as
follows. With many arms binding to a leg, the particle may still

move, even in a parameter regime where the leg is always
bound. In fact, the leg rapidly swaps between different arms,
which have different random lengths and hence apply different
random forces, causing the particle’s position to fluctuate.
Indeed, in eqn (27) it is apparent that the remaining friction
is due to arms and not to the leg. Swapping the particle upside
down, this is equivalent to a particle with a large number M of
legs binding to a uniformly sticky surface, but where on average
only 0 or 1 leg is bound to the surface at a time. Therefore, this
limit is equivalent to the pre-averaged result: each time a new
arm is bound it is sampled from its equilibrium distribution –
as so many arms are within reach.

Simulations with M arms are presented in Fig. 8C with
analytical solutions eqn (25) (green colors). They indeed con-
verge to the pre-averaged result (pink). For consistency, we also
record the result of ref. 51 (eqn (2.48)) that corresponds to
pre-averaging and assumes e = g/T. It is plotted in Fig. 8C (red)
and agrees with our result only over a limited range of para-
meters, corresponding to the validity range of ref. 51.

3.3.4 Numerous legs facing numerous arms. N legs binding
to M arms induce a long time effective friction that encapsulates
the previous result for M arms and that for N legs in Section 1.4
(Supplementary 4.3.4). Eqn (15) still holds with adapted bond
probabilities pn, and geff in eqn (16) is the harmonic average
between arm and leg contributions, (geff,n(M, N))�1 = geff,M,n

�1 +
geff,N,n

�1.
Overall, spanning different limits shows that our methodol-

ogy to investigate long time dynamics is robust, as it accounts
for a broad range of physical parameters and a variety of
geometries. It also justifies the use of ‘‘pre-averaging’’ approx-
imations (sampling leg lengths from equilibrium distributions
upon binding) to accelerate simulations in specific situations.
It also highlights that taking limits of various parameters is
subtle, and care must be taken when doing so as the limits do
not commute in general.

Conclusion

When a particle is coated with ligands that bind and unbind
stochastically to receptors on a surface, the ligands impart a
random force to the particle each time they bind, causing the
particle to undergo a random walk on long timescales. We
constructed a model for the coupled dynamics of such a
nanocaterpillar and its leg-like ligands, and derived an
analytical expression for the nanocaterpillar’s long-term effec-
tive diffusion coefficient as a function of the microscopic leg
parameters. Our simulations showed this expression is valid
over a broad range of parameters. Our expression predicts a
dramatic decrease in the diffusion coefficient, by several
orders of magnitude, as temperature decreases by a few
degrees, a prediction that is borne out in our experimental
measurements.

Our model allows us to distinguish between two modes of
motion, sliding and hopping, and to identify parameters that
govern which mode of motion is preferred, across a wide range

¶ Note however that attaching springs with different spring constants would not
lead to a similar harmonic sum of effective frictions, as the effective friction
contains more contributions than those originating from the spring recoil force
(analytical results not shown here).
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of biophysical systems. Typically, systems with a large number
of legs will slide, since the mean-squared displacement due to
hopping decreases exponentially with the number of bound
legs. Hopping is favored for systems with short, stiff legs, and/
or strong bonds. Regardless of the mode of motion, the fast
binding and relaxation dynamics at the microscale result in an
overall slow diffusion of the nanocaterpillar, sometimes many
times smaller than the background hydrodynamic diffusion.
We derived the effective diffusivity for a range of other models
and scaling assumptions, which allowed us to tease out e.g. the
effect of having arms (flexible receptors) as well as legs, having
significantly more arms than legs or vice versa, having signifi-
cant inertia, etc. In particular, we explored the validity range of
specific approximations used to accelerate simulations, such as
that upon binding, leg lengths are sampled from their equili-
brium distributions.22,33,51 We showed this approximation is
valid for fast leg dynamics g/k { qon, qoff in 1D, or when
binding to a great number of binding partners, such as many
arms, M c 1, yet its validity should be reassessed in more
complex geometries.

There are numerous ways to build upon our model to
address additional complexities within the same coarse-
graining framework. An important step would be to incorporate
particle rotational degrees of freedom, and to ask how rolling
compares to hopping and sliding. Rolling has been predicted to
lead to a low effective friction in systems with stiff legs, because
it doesn’t require stretching legs at the contact point.33,54 While
rolling has been modeled in special situations, none of these
account for the full stochastic nature of the motion, nor do they
systematically derive a coarse-grained equation from micro-
scopic parameters.41 A systematic derivation of a rolling diffu-
sion coefficient would involve a few additional mathematical
subtleties beyond those that occur here, such as including
binding rates with spatial dependencies to account for the
variable separation between surfaces,75,76 but we may never-
theless expect similar parameters (such as spring relaxation
times and unbinding rates) to discriminate between rolling and
other modes of motion.

Going further, other effects that could be studied include the
details of binding kinetics, e.g. non-exponential kinetics in DNA
hybridization,77–79 which could also impact the long time
response;42 mobility of the leg roots, corresponding to fluidity
of the bilayer;10,80 and out-of-equilibrium effects, such as white
blood cells streaming in blood flow,5,76 active stepping of
molecular motors,49,81,82 or proteins that actively cleave bonds
on influenza A.17,36 Accounting for such effects would require
adapting bond dynamics to include increased bond rigidity or
bond lifetime in flow;3,83–87 binding kinetics coupled to the
number of bonds;47,49 or memory effects associated with dead
zones created by cleaved bonds.26,36,52 Importantly, such
improvements require carefully adapting binding rates to pre-
serve detailed balance and physical constraints.32,75

Furthermore, detailed hydrodynamic effects may be impor-
tant to describe certain kinds of nanocaterpillar dynamics. We
have accounted for hydrodynamics via the bare friction coeffi-
cients (G, g), but these coefficients themselves are coarse-

grained, and in reality depend on the distance of a nanocater-
pillar to a surface66 and are coupled to the details of the
polymer leg mesh. Indeed, elasticity of the polymer mesh could
modify the particle’s mobility near the interface, as was pre-
dicted for elastic membranes.88,89 A more detailed description
of the hydrodynamic flow near a nanocaterpillar could help
shed light on other systems where mobility through fluid is
mediated by slender legs, such as for the Vampire amoeba.90

Beyond its biophysical details, nanocaterpillar motion reso-
nates with other fields where mobility is determined through
adhesive contacts. For example, solid state sliding friction is
created by bonds breaking between atoms. Close neighbor
interactions between bonds, originating from mechanical inter-
actions, can result in dramatic avalanches of bond breaking
that change the sliding motion.91,92 Similar correlations
between nearby bonds could be at play in some nanocaterpil-
lars. For example, in white blood cells, membrane tension
mediates bond-bond interactions.47,48 It is therefore interesting
to speculate whether avalanches of bond unbinding could also
occur for nanocaterpillar systems. Overall, the mathematical
framework of coarse-graining is well suited to explore how
microscopic features determine macroscopic modes of motion
for nanocaterpillars and could facilitate predictive capacity for
materials design and biophysical systems.
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Appendix A: Projection of the dynamics
in the bound state

To project the stochastic dynamics eqn (1) and (2) in the bound
case we use a formalism (and notations) similar to ref. 32; see
also ref. 60 and 93. This projection consists in using stiff
springs to impose each constraint, and considering the limit
where the spring constants go to infinity. The resulting pro-
jected equations can be obtained by directly pursuing the steps
below (without redoing the reasoning with stiff springs).

We start from stochastic equations in the (x, l) space and
seek to project them on the constraint manifold, defined by the
constraint q(x, l) = x + l � xr = 0. The constraint matrix is
therefore

C ¼ ðrqÞT ¼ 1 1ð Þ: (28)
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We obtain the projector

P ¼ I � CTðCCTÞ�1C ¼ 1

2

1 �1
�1 1

� �
: (29)

Initially the dynamics of X = (x, l)T may be written as

dX

dt
¼ �~G�1rUðXÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT ~G�1

q
ZxlðtÞ (30)

where the potential U(X) = kl2/2, the noise Zxl = (Zx, Zl)
T and the

friction matrix is

~G ¼ G 0
0 g

� �
: (31)

The projected friction and its Moore–Penrose pseudo-
inverse are

GP ¼ P~GP ¼ Gþ g
4

1 �1
�1 1

� �
; (32)

GyP ¼
1

Gþ g
1 �1
�1 1

� �
(33)

with a square root

sP ¼
ffiffiffiffiffiffi
GyP

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

Gþ g
p 1 0

�1 0

� �
: (34)

We obtain the projected dynamics

dX

dt
¼ �GyPrUðXÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTGyP

q
ZxlðtÞ (35)

where additional terms are needed if C is not constant over the
constraint manifold.60,93 One can check that this exactly yields
the bound dynamics eqn (3), with Z = Zx (this decomposition of
the noise is not unique but this does not impact the dynamics
in a weak sense).

Appendix B: numerical simulations

Stochastic simulations of particle and leg dynamics are con-
ducted using a custom made Fortran 90 routine. Fast random
number generation is performed according to a Mersenne
twister algorithm. Normally distributed random numbers are
used for particle displacement while uniformly distributed
random numbers are used to determine binding events. Equa-
tions are simulated in their non-dimensional form. The step dt
was chosen to be much smaller than all other time scales of the

system. Typically dt ¼ 1

100
min

qonG
k
;
qonG
k
;
g
G

� �
. The system is

simulated for NT = 108 time steps, and the simulation is
repeated over Nruns = 100 independent runs (with renewed
random number seed).

Table 2 Summary of different models and their effective long time friction. The 1-leg case corresponds to a system where the leg’s center of mass is
fixed on the particle. Apart from the 1-leg case, we ignore differences between G and ~G to simplify notations

Model Sketch Result

Main geometries

1-Arm 1

Geff
¼ p0

G0
þ p1

G1
; G0 ¼ G; G1 ¼ Gþ geff ; geff ¼ gþ k

1

qoff
þ g
k

qon

qoff

� �
1-Leg 1

Geff
¼ p0

G0
þ p1

G1
; G0 ¼ ~G; G1 ¼ ~Gþ geff ; ~G ¼ Gþ g

N-Legs 1

Geff
¼
PN
n¼0

pn

Gn
; pn ¼

N
n

� �
qN�noff qnon

ðqoff þ qonÞN
; Gn ’

N�1
Gþ ngeff

Inertial dynamics

1-Leg, inertia Geff ¼ p0G0 þ p1G1; G0 ¼ G; G1 ¼ Gþ geff

Limit regimes

Small legs 1

Geff
¼ p0

G
þ p1

G
1� geff

G

� 	
Fast legs 1

Geff
¼ p0

G0
þ p1

G1
; G0 ¼ G; G1 ¼ gþ k

qoff

Fast binding 1

Geff
¼ p0

G0
þ p1

G1
; G0 ¼ G; G1 ¼ gþ k

g
k

qon

qoff

� �
Extended geometries

1-Arm, 1-leg 1

Geff
¼ p0

G0
þ p1

G1
; G0 ¼ G; G1 ¼ Gþ 1

2
geff

M-Arms, N-legs

1

Geff
¼
PN
n¼0

pn
Gn
; Gn ¼ Gþ ngeff ;nðM;NÞ;

ðgeff;nðM;NÞÞ�1 ’ ðgeff;M;nÞ�1 þ ðgeff ;N;nÞ�1; geff;P;n ¼ gþ k
1

qoff
þ g
k

ðP� nÞqon
qoff

� �
8>><>>:

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
7 

M
ar

ch
 2

02
2.

 D
ow

nl
oa

de
d 

by
 N

ew
 Y

or
k 

U
ni

ve
rs

ity
 o

n 
4/

18
/2

02
2 

11
:2

4:
54

 P
M

. 
View Article Online

https://doi.org/10.1039/d1sm01544c


Soft Matter This journal is © The Royal Society of Chemistry 2022

To simulate binding and unbinding events, for each leg, at
each time step, we choose a random number R uniformly
distributed between 0 and 1 and then:
� if the leg is bound, and if R 4 qoffdt then the leg becomes

unbound. Otherwise it remains bound.
� if the leg is unbound, and if R 4 qondt then the leg

becomes bound. Otherwise it remains unbound.
This simulation routine approximates well the exponential

binding dynamics expected from the continuous equations
since dt { qoff

�1, qon
�1. To simulate all other stochastic

equations we use a standard Euler–Maruyama discretization.
The particle position x is saved every 104 time steps, and the

mean squared displacement h(x(t + t0) � x(t0))2it0
(averaged over

initial times t0) is computed up to NT/100 = 106 time steps. The
effective diffusion coefficient for each run Deff,i is obtained from
the analytical least squares regression of h(x(t + t0) � x(t0))2it0

with time. The average value over the runs Deff ¼
1

Nruns

P
i

Deff;i

is retained as the effective long time diffusion coefficient. The
standard deviation of Deff,i allows to draw error bars in all
simulation plots.
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